首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functionalized polypyrrole (PPy) film with anthraquinonedisulphonate (AQDS) incorporated as dopant was prepared by anodic polymerization of pyrrole (Py) at a glassy carbon electrode from aqueous solution. The electrochemical behavior of AQDS in PPy matrix and the electrocatalytic reduction of dioxygen on the resulting composite film were investigated in various pH solutions. The formal potential of AQDS and the reduction potential of dioxygen both exhibit pH dependence. In all pH solutions employed, the electrocatalytic reduction of dioxygen at the PPy/AQDS composite film establishes a pathway of irreversible two-electron reduction to form hydrogen peroxide. The pH 6.0 buffer solution is a more suitable medium for the reduction of dioxygen, where the PPy/AQDS composite film showed a more efficient electrocatalytic performance. It was found that AQDS is an effective mediator for the reduction of dioxygen and the reduced AQ is responsible for the enhanced catalytic activity. The catalytic current is under mixed kinetic-diffusion control. The number of electrons transferred and kinetic parameters of dioxygen reduction were determined using cyclic voltammetry, rotating disk voltammetry and Tafel polarization technique.  相似文献   

2.
Cobalt porphyrin (CoP)-modified glassy carbon electrode (GCE) with single-walled carbon nanotubes (SWNTs) and Nafion demonstrated a higher electrocatalytic activity for the reduction of dioxygen in 0.1 M H2SO4 solution. Cyclic and hydrodynamic voltammetry at the CoP-SWNTs/GCE-modified electrodes in O2-saturated aqueous solutions was used to study the electrocatalytic pathway. Compared with the CoP/GCE-modified electrodes, the reduction potential of dioxygen at the CoP-SWNTs/GCE-modified electrodes was shifted to the positive direction and the limiting current was greatly increased. Especially, the Co(TMPP)-SWNTs/GCE-modified electrode was catalyzed effectively by the 4e reduction of dioxygen to water, because hydrodynamic voltammetry revealed the transference of approximately four electrons for dioxygen reduction and the minimal generation of hydrogen peroxide in the process of dioxygen reduction.  相似文献   

3.
Functionalized polypyrrole (PPy) films were prepared by incorporation of anthraquinonedisulphonate (AQDS) as doping anion during the electropolymerization of pyrrole (Py) monomer at a glassy carbon electrode from aqueous solution. The electrochemical behavior of the PPy-bound AQDS modified electrode and cathodic reduction of oxygen on the resulting polymer film were studied. An obvious surface redox reaction corresponding to AQ/H2AQ was observed and the dependence of this reaction on the solution pH was also illustrated. The electrocatalytic ability of the PPy-bound AQDS modified electrode was demonstrated by the electroreduction of oxygen at the optimized pH of 6.3 in a phosphate buffer. The reduced AQDS (H2AQ) is responsible for the extraordinary catalytic activity to the oxygen reduction reaction. The PPy layers not only act as an electron mediator, but also facilitate the stability of the modified electrode. It was found that the catalytic reaction occurred in the presence of the bound AQDS and O2 is in agreement with an electrochemical–chemical (EC) mechanism. The kinetic parameters of oxygen reduction were determined using Koutecky–Levich equation and Tafel polarization technique.  相似文献   

4.
The electrochemical reduction of oxygen on glassy carbon (GC) electrodes modified with in situ generated diazonium cations of anthraquinone (AQ) has been studied using the rotating disk electrode (RDE) technique. The electrografting of the GC electrodes was carried out in two different media: in acetonitrile and in an aqueous acidic solution (0.5 M HCl). 1- and 2-Aminoanthraquinone were used as starting compounds for the formation of the corresponding diazonium derivatives. The anthraquinone diazonium cations were generated by reaction of the aminoanthraquinones with tert-butyl nitrite and sodium nitrite in acetonitrile and in 0.5 M HCl, respectively. For comparison purposes, the previously synthesised and crystallised diazonium tetrafluoroborates of anthraquinone were used for the GC surface modification. Cyclic voltammetry was employed to determine the surface concentration of AQ in O2 free 0.1 M KOH. The electrocatalytic behaviour towards O2 reduction was similar for all the AQ-modified electrodes studied. The kinetic parameters of oxygen reduction were determined using a surface redox catalytic cycle model. The rate constant of the reaction between the semiquinone radical anion of AQ and molecular oxygen was virtually independent of the point of attachment of the quinone to the electrode surface.  相似文献   

5.
Nitrogen doped amorphous carbon (a-C:N) thin film electrodes with a range of film structures have been deposited using a filtered cathodic vacuum arc system. The correlation between film structure and electro-reduction of molecular oxygen in aqueous media at the electrodes has been explored. In aqueous 0.1 M NaOH, dioxygen reduction is inhibited at all the a-C:N electrodes compared with that at glassy carbon electrodes. The potential of the dioxygen reduction current peak shifts negatively at a-C:N electrodes as the sp3 C fraction in the a-C:N materials increases, while the current peak height decreases simultaneously. The a-C:N electrodes possess high sensitivity for investigating the mechanism of dioxygen reduction. It was found that the catalytic H2O2 reduction to H2O on carbon materials is attributed to oxygen species at sp2 C sites.  相似文献   

6.
The poly-1,5-diaminoanthraquinone (P15DAAQ) modified Pt electrodes show electrocatalytic activity for oxygen reduction reaction (ORR) with oxygen reduction peak at about 0.39 V in 0.1 M H2SO4. The P15DAAQ with different thickness has different morphology. The effects of morphologies on the electrocatalytic behaviors of P15DAAQ for oxygen reduction reaction are investigated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements. We propose two different O2-transport processes on electrodes modified with thin P15DAAQ and thick P15DAAQ. Together with the quantitative analysis with O2-transport dynamics, electron-transfer resistance, and catalytic reaction rate during ORR, thin P15DAAQ electrode performs better electrocatalysis for ORR, although thick P15DAAQ provides higher real surface area and more reactive sites which is beneficial for ORR within a short time.  相似文献   

7.
A hemin-modified carbon paste electrode was constructed by a simple, rapid and effective method. The electrochemical behaviour of the modified electrode was characterized by cyclic voltammetry. The modified electrode obtained was very stable and exhibited electrocatalytic response for the reduction of oxygen. The possible mechanism for the catalytic reduction of dioxygen is discussed. The dioxygen is reduced via a one-step reduction accompanying four electrons and four protons transfer at pH 7–11.  相似文献   

8.
Direct electrochemistry of hemoglobin can be performed in acidic and basic aqueous solutions in the pH range 1-13, using stable, electrochemically active films deposited on a didodecyldimethylammonium bromide (DDAB) modified glassy carbon electrode. Films can also be produced on gold, platinum, and transparent semiconductor tin oxide electrodes. Hemoglobin/DDAB films exhibit one, two, and three redox couples when transferred to strong acidic, weak acidic and weak basic, and strong basic aqueous solutions, respectively. These redox couples, and their formal potentials, were found to be pH dependent. An electrochemical quartz crystal microbalance and cyclic voltammetry were used to study the in situ deposition of DDAB on gold disc electrodes and hemoglobin deposition on DDAB film modified electrodes. A hemoglobin/DDAB/GC modified electrode is electrocatalytically reduction active for oxygen and H2O2, and electrocatalytically oxidation active for S2O42− through the Fe(III)/Fe(II) redox couple. In the electrocatalytic reduction of S4O62−, S2O42−, and SO32−, and the dithio compounds of 2,2′-dithiosalicylic acid and 1,2-dithiolane-3-pentanoic acid, the electrocatalytic current develops from the cathodic peak of the redox couple at a potential of about −0.9 V (from the Fe(II)/Fe(I) redox couple) in neutral and weakly basic aqueous solutions. Hemoglobin/DDAB/GC modified electrodes are electrocatalytically reduction active for trichloroacetic acid in strong acidic buffered aqueous solutions through the Fe(III)/Fe(II) redox couple. However, the electrocatalytic current developed from the cathodic peak of the redox couple at a potential of about −0.9 V (from the Fe(II)/Fe(I) redox couple) in weak acidic and basic aqueous solutions. The electrocatalytic properties were investigated using the rotating ring-disk electrode method.  相似文献   

9.
We report an effective approach for the construction of a biomimetic sensor of multicopper oxidases by immobilizing a cyclic-tetrameric copper(II) species, containing the ligand (4-imidazolyl)ethylene-2-amino-1-ethylpyridine (apyhist), in the Nafion® membrane on a vitreous carbon electrode surface. This complex provides a tetranuclear arrangement of copper ions that allows an effective reduction of oxygen to water, in a catalytic cycle involving four electrons. The electrochemical reduction of oxygen was studied at pH 9.0 buffer solution by using cyclic voltammetry, chronoamperometry, rotating disk electrode voltammetry and scanning electrochemical microscopy techniques. The mediator shows good electrocatalytic ability for the reduction of O2 at pH 9.0, with reduction of overpotential (350 mV) and increased current response in comparison with results obtained with a bare glassy carbon electrode. The heterogeneous rate constant (kME) for the reduction of O2 at the modified electrode was determined by using a Koutecky-Levich plot. In addition, the charge transport rate through the coating and the apparent diffusion coefficient of O2 into the modifier film were also evaluated. The overall process was found to be governed by the charge transport through the coating, occurring at the interface or at a finite layer at the electrode/coating interface. The proposed study opens up the way for the development of bioelectronic devices based on molecular recognition and self-organization.  相似文献   

10.
Cathodic dioxygen (O2) reduction was performed at a modified glassy carbon electrode (GCE) by single-walled carbon nanotubes (SWCNT)/Nafion® (NF) film with cobalt (II) tetra (2-amino-phenyl) porphyrin (CoTAPP) and palladium (Pd) nanoparticles incorporated and employed as doping agents. Both the electrochemical behavior of SWCNT with a P(CoTAPP)–Pd nanoparticle matrix and the electrocatalytic reduction of O2 were investigated using transmission electron microscopy (TEM), cyclic voltammetry (CV) and rotating ring-disk electrode (RRDE) techniques in 0.1 mol l−1 H2SO4 aqueous solutions. The electrocatalytic reduction of O2 at the SWCNT/NF/P(CoTAPP)–Pd composite film established a pathway of four-electron transfer reductions into H2O. Hydrodynamic voltammetry revealed that the modified electrode was catalyzed effectively by the four-electron transferred reduction of dioxygen into H2O with minimal generation of H2O2. The SWCNT/NF/P(CoTAPP)–Pd composite film showed a highly efficient electrocatalytic performance. P(CoTAPP)–Pd was an effective mediator for the reduction of dioxygen and was responsible for the enhanced catalytic activity.  相似文献   

11.
Electrochemical behaviour of sandwich-type composite electrodes of polypyrrole (PPy) and CoFe2O4 nanoparticles (Ox) were investigated in an aqueous solution of 0.5 M K2SO4 and 5mM KOH at 25 °C using electrochemical impedance (EI), cyclic voltammetry (CV) and Tafel polarization techniques. EI and CV studies indicated that the incorporation of oxide nanoparticles influenced the charge transfer and transport behaviours of the polymer matrix greatly. The bulk electrical resistances of pure polymer (4.5 ± 1.7 Ω) as well as composite (2.7 ± 0.8 Ω) electrodes were practically constant in the potential region, +0.1 to −0.7 V. The latter electrode showed a good electrocatalytic activity towards the oxygen reduction reaction (ORR).  相似文献   

12.
The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH3CONH2), urea (NH2CONH2) and ammonium nitrate (NH4NO3). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step, 2-electron pathways of O2 to H2O2 and further reduction of H2O2 to H2O. The first 2-electron reduction of O2 to H2O2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and RDE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BDD) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide.  相似文献   

13.
Two new modified carbon paste electrodes (CPEs) based on two different X type zeolites, a natural zeolitic volcanic tuff (NZ) and a NaX type synthetic zeolite (SZ), modified with methylene green (MG) were developed. Cyclic voltammetry measurements revealed a reasonably fast electron transfer rate and a good stability for both investigated electrodes. The observed differences between the electrochemical behavior of MG-NZ-CPEs and MG-SZ-CPEs (the effect of pH on the formal standard potential, the magnitude of the rate constants for heterogeneous electron transfer and electrode response decay) were explained in terms of zeolites structure. The modified electrodes showed moderate electrocatalytic effect towards H2O2 reduction and a relatively low limit of detection (0.5 mM for MG-NZ-CPEs).  相似文献   

14.
The electrocatalytic reduction of oxygen at Au nanoparticles-electrodeposited Au electrodes has been studied using rotating disk electrode (RDE) voltammetry in 0.5 M H2SO4. Upon analyzing and comparison of the limiting currents data obtained at various rotation speeds of this RDE with those obtained at the bulk Au electrode, an effective value of the number of electrons, n, involved in the electrochemical reduction of O2 was estimated to be ca. 4 for the former electrode and ca. 3 for the bulk Au electrode at the same potential of −350 mV versus Ag/AgCl/KCl(sat.). This indicates the higher possibility of further reduction and decomposition of H2O2 at Au nanoparticles-electrodeposited Au electrode in this acidic medium. The reductive desorption of the self-assembled monolayer of cysteine, which was formed on the Au nanoparticles-electrodeposited Au electrode, was used to monitor the change of the specific activity of the bulk Au electrode upon the electrodeposition of the Au nanoparticles.  相似文献   

15.
Activated carbon materials were modified by generating several functional groups containing oxygen and/or nitrogen atoms on their surfaces. Surface properties of obtained carbon samples were investigated. The point of zero charge was determined by different methods. The catalytic properties of these materials in the decomposition of hydrogen peroxide and in the electrochemical reduction of dioxygen in aqueous electrolytes have been studied. The catalytic activity for O2 reduction correlates with that for HO2 decomposition. A linear relationship was derived for the dioxygen reduction peak potential and the decomposition rate constant. Thus, the selection of active catalysts for the heterogeneous decomposition of HO2 is a good starting point for the design of a carbon-based oxygen cathode.  相似文献   

16.
This study reports on the modification of the anode and the cathode in a dual-chamber microbial fuel cell (MFC) with a polypyrrole (PPy)/anthraquinone-2,6-disulfonate (AQDS) conductive film to boost its performance and the application of the MFC to drive neutral electron-Fenton reactions occurring in the cathode chamber. The MFC equipped with the conductive film-coated anode and cathode delivered the maximum power density of 823 mW cm−2 that was one order of magnitude larger than that obtained in the MFC with the unmodified electrodes. This was resulted from the enhanced activities of microbial metabolism in the anode and oxygen reduction in the cathode owing to the decoration of both electrodes with the PPy/AQDS composite. The MFC with the modified electrodes resulted in the largest rate of H2O2 generation in the cathode chamber by the two-electron reduction of O2. The increase in the concentration of H2O2 was beneficial for the enhancement in the amount of hydroxyl radicals produced by the reaction of H2O2 with Fe2+, thus allowing an increased oxidative ability of the electro-Fenton process towards the decolorization and mineralization of an azo dye (i.e., Orange II) at pH 7.0.  相似文献   

17.
Conducting polypyrrole (PPy) thin-film electrodes were prepared by the electropolymerization of pyrrole on gold-coated glass plates. Films of various roughnesses were obtained by the variation of the scan rates during electropolymerization. These thin films were modified by doping with 6mM of the dopant NiCl2. The surface morphology of the films was studied by scanning electron microscopy and atomic force microscopy (AFM), which suggested films prepared with a high scan rate were rougher in nature than the films produced with a low scan rate. The electrocatalytic reduction of nitrobenzene was carried out with these electrodes with the cyclic voltammetry technique in acetonitrile containing 0.1M HClO4 as a supporting electrolyte. The various results obtained show that the conducting PPy thin-film electrodes were catalytically active toward the electroreduction process. The modified PPy film electrodes doped with NiCl2 were more active toward nitrobenzene electroreduction than the PPy film alone. The results indicate that the roughness of the films played a very important role in determining their catalytic activity. The PPy films that were more rough in nature were catalytically more active than the smooth films; this may have been due to the availability of more reactive sites in the case of rough films. The apparent diffusion coefficients of the PPy film electrodes were also calculated. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The oxygen reduction reaction (orr) was studied on composite electrodes GC/PPy/PPy(NixCo3−xO4)/PPy with x=0.3 and 1, in 2.5×10−3 M KOH+0.8 M KCl at room temperature. The orr takes place on the oxide particles with formation of hydrogen peroxide (H2O2), which diffuses through the polymer layers to reach the bulk of electrolyte solution. The amount of H2O2 produced, determined indirectly by iodine spectrometry, depended strongly on the oxide stoichiometry. The effects of the orr and of the generation of H2O2 on the conductivity of PPy and on the behaviour of the embedded oxide particles are discussed.  相似文献   

19.
Nafion stabilized inks of Vulcan XC-72 supported platinum (20 wt.%) nanoparticles (Pt/XC-72) were utilized to produce electrocatalytic films on glassy carbon. The catalysts were modified (activated) with phosphododecatungstic acid H3PW12O40 (PW12). Comparison was made to bare (PW12-free) electrocatalytic films. Electroreduction of dioxygen was studied at 25 °C in 0.5 mol dm−3 H2SO4 electrolyte using rotating disk voltammetry. For the same loading of platinum (≈95 μg cm−2) and for the approximately identical distribution of the catalyst, the reduction of oxygen at a glassy carbon electrode modified with the ink containing PW12 proceeded at ca. 30-60 mV more positive potential (depending on the PW12 content), and the system was characterized by a higher kinetic parameter (rate of heterogeneous electron transfer), when compared to the PW12-free electrocatalyst. Gas diffusion electrodes with Pt/XC-72 supported on carbon paper (Pt loading 1 mg cm−2) were also tested. Under the same experimental conditions, while the exchange current density and the total resistance contribution to polarization components, computed from the galvanostatic polarization curves were found to be clearly higher and lower, respectively, for the ink modified with PW12 relative to the unmodified system. The results demonstrate that addition of heteropolytungstatic acid (together with Nafion) enhances the electrocatalytic activity of platinum towards reduction of oxygen.  相似文献   

20.
The electrocatalytic reduction of molecular oxygen (O2) has been performed in O2-saturated 0.5 M KOH solution at Au nanoparticles electrodeposited onto two different carbon substrates, namely glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG). Cyclic voltammetry (CV) technique has been used in this investigation. The electrocatalytic activity of the Au nanoparticle-based electrodes is inherently related to its electrodeposition conditions (i.e., the absence or presence of some additives) as well as the nature of the substrate. For instance, Au nanoparticles electrodeposited onto GC (nano-Au/GC) from K[AuBr4] in the presence of 25 μM cysteine showed a high electrocatalytic activity towards the oxygen reduction reaction (ORR) as demonstrated by the largest positive shift of the cathodic peak potential (at ca. −0.165 V versus Ag/AgCl/KCl (sat)). On the other hand, two well-separated successive reduction peaks corresponding to the 2-step 4-electron reduction of oxygen were observed at the different nano-Au/HOPG electrodes. The relative ratio of the two peak current heights changed significantly depending on the electrodeposition conditions of the Au nanoparticles. The morphology of the different Au nanoparticles electrodeposited onto the different substrates was depicted by scanning electron microscope (SEM) technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号