首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将活性炭放入质量分数为10%的NaOH溶液中进行预处理,然后将其与未处理的活性炭分别作为载体制备Pd/C催化剂。对比两种催化剂的电化学性能发现,预处理的活性炭所制备的Pd/C催化剂,在甲酸电催化氧化活性和稳定性方面好于未处理的活性炭所制备的Pd/C催化剂。  相似文献   

2.
采用纳米石墨为原料,以3种不同还原温度80,60和40℃分别制得石墨烯GN-1、GN-2和GN-3。用3种不同还原温度制备的石墨烯作为载体制备了Pd催化剂Pd/GN-1、Pd/GN-2和Pd/GN-3。发现这3种钯催化剂Pd/GN-1、Pd/GN-2和Pd/GN-3中,Pd/GN-1具有最大的电化学比表面积,对甲酸的电催化氧化活性也最高,而Pd/GN-2电催化剂对甲酸电催化氧化的稳定性最好。  相似文献   

3.
分别以硼氢化钠和乙二醇为还原剂,经络合还原法制备了炭载钯(Pd/C)催化剂。透射电镜(TEM)和X射线粉末衍射谱(XRD)结果表明,以乙二醇为还原剂制备的Pd/C催化剂中Pd粒子具有较小的粒径、均匀的粒径分布和较大的相对结晶度,Pd粒子的平均粒径和相对结晶度分别为4.2±2 nm和1.88。电化学测试结果显示,以乙二醇为还原剂制备的Pd/C催化剂具有较大的电化学活性面积,对甲酸氧化表现出较高的电催化活性和稳定性。  相似文献   

4.
通过低温氧化法制备了聚吡咯碳(PPyC)载体,并以PPyC为载体制备了纳米Pd催化剂(Pd/PPyC)。采用X射线衍射、扫描电镜、透射电镜等手段对载体PPyC及催化剂Pd/PPyC进行了表征,通过分析电化学比表面随循环伏安次数的变化及多电势阶跃实验结果表明,以PPyC为载体的Pd/PPyC催化剂具有比碳黑作载体制备的Pd/C催化剂更高的稳定性。  相似文献   

5.
分别以硼氢化钠和乙二醇为还原剂,经络合还原法制备了炭载钯(Pd/C)催化剂。透射电镜(TEM)和X射线粉末衍射谱(XRD)结果表明,以乙二醇为还原剂制备的Pd/C催化剂中Pd粒子具有较小的粒径、均匀的粒径分布和较大的相对结晶度,Pd粒子的平均粒径和相对结晶度分别为(4.2±2)nm和1.88。电化学测试结果显示,Pd/C催化剂具有较大的电化学活性面积,对甲酸氧化表现出较高的电催化活性和稳定性。  相似文献   

6.
Incorporation of carbon nanotubes (CNTs) in conducting polymer can lead to new composites with enhanced electrical and mechanical properties. However, the development of such composites has been hampered by the inability to disperse CNTs in polymer matrix due to the lack of chemical compatibility between polymers and CNTs. Covalent sidewall functionalization of carbon nanotube provides a feasible route to incorporate carbon nanotube in polymer. In this work, 4‐aminobenzene groups were grafted onto the surface of multi‐walled carbon nanotube (MWNT) via C? C covalent bond. Polyaniline (PANI)/MWNT composites were fabricated by electrochemical polymerization of aniline containing well‐dissolved functionalized MWNTs. The obtained composites can be used as catalyst supports for electrooxidation of formic acid. Cyclic voltammogram results show that platinum particles deposited in PANI/MWNT composite films exhibit higher electrocatalytic activity and better long‐term stability towards formic acid oxidation than that deposited in pure PANI films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The courses of aniline oxidation with ammonium peroxydisulfate in aqueous solutions of strong (sulfuric) and in weak (acetic) acids, followed by temperature and acidity changes, are different. In solutions of sulfuric acid, granular polyaniline (PANI) was produced; in solutions of acetic acid, PANI nanotubes were obtained. The external diameter of the nanotubes was 100–300 nm, the internal cavity 20–100 nm, and the length extended to several micrometres. The morphology of PANI, granular or tubular, depends on the acidity conditions during the reaction rather than on the chemical nature of the acid. PANI nanotubes were also produced when aniline was oxidized in the absence of any acid. The bulk conductivity of PANI prepared in solutions of acetic acid was 0.08–0.27 S cm?1, depending on the acid concentration. Protonated PANI prepared in sulfuric and acetic acids were deprotonated with ammonium hydroxide to obtain PANI bases and the ammonium salt of the protonating acid. FTIR spectroscopy showed the differences in the molecular structure of the PANI bases. Irrespective of whether the polymerization was performed in solutions of sulfuric or acetic acid, PANI had hydrogen sulfate counter‐ions only. The PANI morphology is thus not controlled by the nature of counter‐ions. The acidity of the reaction medium determines the protonation of monomer, oligomer and polymer species. The chemistry of aniline oxidation is likely to be affected especially by the protonation of an intermediate in the pernigraniline form. It is proposed that, in the course of aniline oxidation, pH‐dependent self‐assembly of aniline oligomers predetermines the final PANI morphology. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
The electrochemical formation of a palladium nanoparticle catalyst composite material has been investigated. A carbon nanoparticle-chitosan host film deposited onto a carbon substrate electrode has been employed to immobilize PdCl2 as catalyst precursor. A one-step electrochemical reduction process gave Pd nanoparticles within the chitosan matrix with different levels of loading, on different carbon substrates, and with a reproducible catalyst particle diameter of ca. 3-5 nm. High activity for formic acid oxidation has been observed in aqueous phosphate buffer medium. The oxidation of formic acid has been investigated as a function of pH and maximum catalyst activity was observed at pH 6. When varying the formic acid concentration, limiting behaviour consistent with a “resistance effect” has been observed. A flow cell system based on a screen-printed carbon electrode has been employed to establish the effect of hydrodynamic conditions on the formic acid oxidation. Both increasing the convective-diffusion mass transport rate and increasing the concentration of formic acid caused the oxidation peak current to converge towards the same “resistance limit”. A mechanistic model to explain the resistance effect based on CO2 flux and localized CO2 gas bubble formation at the Pd nanoparticle modified carbon nanoparticle-chitosan host film has been proposed.  相似文献   

9.
甲酸是一种很有前途的化学储氢材料,可作为低温液体燃料电池的直接燃料。钯基催化剂作为直接甲酸燃料电池(DFAFC)阳极材料,对甲酸氧化具有良好的催化活性,能克服一氧化碳的毒化,在甲酸电化学氧化反应中主要按直接途径进行。降低贵金属含量、提高催化活性、提升稳定性是当前钯基催化材料研究领域的主要方向。主要介绍了当前研究中钯催化剂对甲酸电氧化的催化机理,综述了近5 a的钯合金催化剂制备、特殊形貌控制、碳负载对甲酸氧化活性增强的研究,对钯基催化剂的持续开发具有实际应用意义。  相似文献   

10.
Multicomponent electrodes composed of reticulated vitreous carbon (RVC), polyaniline (PANI) and palladium (Pd) were prepared by a two-step method and then investigated. In the sample synthesis cyclic voltammetry and chronoamperometry modes were subsequently applied. A strict procedure of sample synthesis and a model to estimate the partial loading values were established. The latter, allowed for precise coulometric determination of sample composition i.e. the amount of PANI (4-86 nmol/cm2) and Pd (0.2-2.1 μmol/cm2) in RVC/PANI/Pd electrode. Low PANI/Pd ratio (mainly ? 1) assured the predominating contribution of electrodeposition process as compared to possible chemical deposition. The presence of polymer affected the rate of Pd electrodeposition. The morphology and electrochemical properties of RVC/PANI/Pd and RVC/Pd systems were studied. SEM and STM images have shown that the amount of PANI in the sample influences the size and the distribution of palladium aggregates. The size of Pd crystals forming the aggregates was ca. 5 nm. Pd coalescent crystals tend to locate in the vicinity of polymer chains. Cyclic voltammograms of RVC/PANI/Pd were found to combine RVC/PANI and RVC/Pd electrochemical characteristic, with very slight mutual effect of components. RVC/PANI/Pd electrodes were studied with respect to hydrogen sorption abilities. RVC/PANI/Pd electrodes absorb smaller amounts of hydrogen in the β-phase than their RVC/Pd counterparts. The latter is caused by partial isolation of Pd in the course of absorption period, by reduced non-conducting PANI film.  相似文献   

11.
Wei Wang  Shan Ji  Hui Wang  Rongfang Wang 《Fuel Cells》2012,12(6):1129-1133
To improve the electrochemical performance of Pd‐based catalysts for formic acid oxidation, a carbon supported nanoporous PdNi catalyst is prepared by dealloying high‐Ni‐content PdNi alloy nanoparticles in acid solution. The structure of nanoporous PdNi/C catalyst is characterized by X‐ray diffraction, transmission electron microscopy and X‐ray photoelectron spectroscopy. The electrocatalytic results show that the activity of the nanoporous PdNi/C catalyst is higher than that of nonporous Pd/C catalyst. The results demonstrate that the carbon‐supported nanoporous PdNi catalyst has a potential for application in direct formic acid fuel cells.  相似文献   

12.
This work provides a detailed electrochemical impedance study for formic acid electro-oxidation on size-controlled Pd/C nanoparticles, the synthesis of which was done by a simple protocol using ethylene glycol as a reducing agent. By controlling KOH concentration, this strategy provides a synthesis method for Pd nanoparticles with a selective size range of 3.9–7.5 nm. The as-prepared Pd nanoparticles exhibited size-dependent electrochemical property and electrochemical characterizations of four different Pd/C nanocatalysts (3.9, 5.2, 6.1, and 7.5 nm) showed that Pd particle with average size of 6.1 nm has the highest formic acid oxidation activity. Electrochemical impedance-based characterizations of formic acid oxidation on Pd/C suggested that at high potentials the adsorbed oxygen species could block the catalyst surface and inhibit the oxidation reaction, as reflected by the negative polarization resistance. Unlike Pd/C, the intermediate adsorbed CO species (COads) plays a critical role for formic oxidation on Pt/C and thus the impedance spectra of Pd/C and Pt/C appear different potential-dependent patterns in the second quadrant. The issue of CO was investigated by an impedance investigation of Pd/C in a mixture of formic acid containing dissolved CO.  相似文献   

13.
Palladium particles supported on porous carbon of 20 and 50 nm pore diameters were prepared and applied to the direct formic acid fuel cell (DFAFC). Four different anode catalysts with Pd loading of 30 and 50 wt% were synthesized by using impregnation method and the cell performance was investigated with changing experimental variables such as anode catalyst loading, formic acid concentration, operating temperature and oxidation gas. The BET surface areas of 20 nm, 30 wt% and 20 nm, 50 wt% Pd/porous carbon anode catalysts were 135 and 90 m2/g, respectively. The electro-oxidation of formic acid was examined in terms of cell power density. Based on the same amount of palladium loading with 1.2 or 2 mg/cm2, the porous carbon-supported palladium catalysts showed higher cell performance than unsupported palladium catalysts. The 20 nm, 50 wt% Pd/porous carbon anode catalyst generated the highest maximum power density of 75.8 mW/cm2 at 25 °C. Also, the Pd/porous carbon anode catalyst showed less deactivation at the high formic acid concentrations. When the formic acid concentration was increased from 3 to 9 M, the maximum power density was decreased from 75.8 to 40.7 mW/cm2 at 25 °C. Due to the high activity of Pd/porous carbon catalyst, the cell operating temperature has less effect on DFAFC performance.  相似文献   

14.
活性炭改性对用于甲酸分解的Pd/活性炭催化剂的影响   总被引:1,自引:0,他引:1  
采用磁力搅拌法和水浴振荡法制备应用于甲酸分解的Pd/活性炭(AC)催化剂,研究了活性炭载体改性和制备方法对催化剂分解甲酸性能的影响。采用恒温水浴振荡装置,在80℃水浴中进行甲酸催化分解反应,以甲酸的催化分解率评价催化剂催化活性。结果表明,以经过不同的酸、碱、盐溶液改性后的活性炭为载体采用不同方法制备的Pd/AC催化剂对甲酸的催化分解效果不同,以Na2CO3改性的活性炭为载体采用磁力搅拌法制备的催化剂活性最好,甲酸水溶液的分解率达85%以上,含甲酸的工业废水的分解率达70%。  相似文献   

15.
Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.  相似文献   

16.
Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.  相似文献   

17.
Colloid-imprinted carbon (CIC) with tailored mesopore size of ca. 22 nm and highly developed interconnected nanoporous structure was synthesized and explored for the first time as an anode catalyst support in direct formic acid fuel cell. The CIC-22 possesses superb structural characteristics such as uniform morphology, well-developed porosity, large specific surface area and pore volume, and high electrical conductivity. The unique characteristics make the CIC-22 a potentially effective support for Pt–Ru anode electrocatalysts toward oxidation of formic acid. Enhancement by 78% in electrocatalytic activity toward the formic acid oxidation has been demonstrated by the CIC-22-supported Pt50Ru50 (60 wt%) catalyst compared with the commercial carbon black Vulcan XC-72-supported one.  相似文献   

18.
采用化学还原法,在乙二醇体系中制备了碳载PdNi催化剂(PdNi/C),与相同方法制备的Pd/C催化剂比较,发现PdNi/C催化剂对甲酸氧化具有较负的峰电位和较高的峰电流,且起始氧化电位也较低。计时电流曲线测试表明,与Pd/C催化剂相比,甲酸在PdNi/C催化剂上的氧化电流密度随时间衰减得比较慢,且具有较高的稳定电流。  相似文献   

19.
The highly dispersed carbon supported Pd–TiO2 catalyst was prepared by a liquid phase reduction method with intermittent microwave irradiation. The kinetic parameters, such as the charge transfer parameter (α) and the apparent diffusion coefficient (D) of formic acid electrooxidation on a carbon supported Palladium Titanium dioxide (Pd–TiO2/C) electrode were obtained under the quasi steady-state conditions. The dependence on temperature of the formic oxidation at a Pd–TiO2/C electrode was also investigated and the activation energy (E a) at different potentials was obtained.  相似文献   

20.
Pd catalyst with dendritic morphology was synthesized on ordered and uniformly distributed titania nanotubes (TNT/Ti), and bare Ti by a simple electrochemical deposition process. The influence of support morphology was studied in relation to Pd deposition and its electro catalytic oxidation of formic acid. The structural property of Pd dendrites was characterized by scanning electron microscopy and X‐ray diffraction. The electrochemical study showed the activity and durability of Pd/TNT/Ti catalyst for formic acid oxidation was enhanced compared to Pd/Ti electro catalyst. The synergetic contribution from TNT/Ti as support for Pd and its enhanced catalytic activity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号