首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Conductive carbon additives with different surface area and particle size, alone or in different combinations, were tested as conductive additives for LiFePO4 cathode materials in lithium ion batteries. Their influence on the conductivity, rate capability as well as the structure of the resulting electrodes was investigated. Mercury porosimetry was carried out to define the porosity and pore size distribution of electrodes, and scanning electron microscopy was used to image their morphology. By comparing the discharge capacity, especially at higher rates, it can be concluded that the electrochemical performance of LiFePO4 cathode material is significantly affected by the surface area, particle size and morphology of the used carbon additives. The best rate performance is achieved with the electrode containing a carbon additive with a specific surface area of 180 m2 g−1. This work reveals that the choice of conductive additive influences discharge capacity of LiFePO4 Li-ion battery cells by as much as 20–30%. This is due to conductive additive’s influence on both electronic conductivity and porosity (which determines ionic conductivity) of LiFePO4 electrodes. A system approach to lithium ion battery material research should always consider inactive materials, such as conductive additives and binders, in addition to active materials.  相似文献   

2.
Sulfolane (also referred to as tetramethylene sulfone, TMS) containing LiPF6 and vinylene carbonate (VC) was tested as a non-flammable electrolyte for a graphite |LiFePO4 lithium-ion battery. Charging/discharging capacity of the LiFePO4 electrode was ca. 150 mAh g−1 (VC content 5 wt%). The capacity of the graphite electrode after 10 cycles establishes at the level of ca. 350 mAh g−1 (C/10 rate). In the case of the full graphite |1 M LiPF6 + TMS + VC 10 wt% |LiFePO4 cell, both charging and discharging capacity (referred to cathode mass) stabilized at a value of ca. 120 mAh g−1. Exchange current density for Li+ reduction on metallic lithium, estimated from electrochemical impedance spectroscopy (EIS) experiments, was jo(Li/Li+) = 8.15 × 10−4 A cm−2. Moreover, EIS suggests formation of the solid electrolyte interface (SEI) on lithium, lithiated graphite and LiFePO4 electrodes, protecting them from further corrosion in contact with the liquid electrolyte. Scanning electron microscopy (SEM) images of pristine electrodes and those taken after electrochemical cycling showed changes which may be interpreted as a result of SEI formation. No graphite exfoliation was observed. The main decomposition peak of the LiPF6 + TMS + VC electrolyte (TG/DTA experiment) was present at ca. 275 °C. The LiFePO4(solid) + 1 M LiPF6 + TMS + 10 wt% VC system shows a flash point of ca. 150 °C. This was much higher in comparison to that characteristic of a classical LiFePO4 (solid) + 1 M LiPF6 + 50 wt% EC + 50 wt% DMC system (Tf ≈ 37 °C).  相似文献   

3.
We demonstrate that both single-walled carbon nanotube (SWCNT) types and nanotube-matrix polymer-nanotube (CNT-P-CNT) junctions have profound impact on electro-optical properties of SWCNT/polymer composites. Composite IR sensors based on CoMoCAT®-produced SWCNTs (SWCNTsCoMoCAT) significantly outperform those based on HiPco®-produced SWCNTs (SWCNTsHiPco). Higher semiconducting nanotube concentration in a SWCNT material is critical to enhance the photo effect of IR light on SWCNT/polymer nanocomposites, whereas CNT-P-CNT junctions play a dominant role in the thermal effect of IR light on supported SWCNT/polymer composite films.  相似文献   

4.
Minfang Mu  John M. Torkelson 《Polymer》2008,49(5):1332-1337
A new processing method has been developed to combine a polymer and single wall carbon nanotubes (SWCNTs) to form electrically conductive composites with desirable rheological and mechanical properties. The process involves coating polystyrene (PS) pellets with SWCNTs and then hot pressing to make a contiguous, cellular SWCNT structure. By this method, the electrical percolation threshold decreases and the electrical conductivity increases significantly as compared to composites with well-dispersed SWCNTs. For example, a SWCNT/PS composite with 0.5 wt% nanotubes made by this coated particle process (CPP) has an electrical conductivity of ∼3 × 10−4 S/cm, while a well-dispersed composite made by a coagulation method with the same SWCNT amount has an electrical conductivity of only ∼10−8 S/cm. The rheological properties of the composite with a macroscopic cellular SWCNT structure are comparable to PS, while the well-dispersed composite exhibits a solid-like behavior, indicating that the composites made by this new CPP are more processable. In addition, the mechanical properties of the CPP-made composite decrease only slightly, as compared with PS. Relative to the common approach of seeking better dispersion, this new fabrication method provides an important alternative means to higher electrical conductivity in SWCNT/polymer composites. Our straightforward particle coating and pressing method avoids organic solvents and is suitable for large-scale, inexpensive processing using a wide variety of polymers and nanoparticles.  相似文献   

5.
PANI/SWCNT composites were prepared by electrochemical polymerisation of polyaniline onto SWCNTs and their capacitive performance was evaluated by means of cyclic voltammetry and charge-discharge cycling in 1 M H2SO4 electrolyte. The PANI/SWCNT composites single electrode showed much higher specific capacitance, specific energy and specific power than pure PANI and SWCNTs. The highest specific capacitance, specific power and specific energy values of 485 F/g, 228 W h/kg and 2250 W/kg were observed for 73 wt.% PANI deposited onto SWCNTs. PANI/SWCNT composites also showed long cyclic stability. Based upon the variations in the surface morphologies and specific capacitance of the composite, a mechanism is proposed to explain enhancement in the capacitive characteristics. The PANI/SWCNT composites have demonstrated the potential as excellent electrode materials for application in high performance supercapacitors.  相似文献   

6.
The electrochemical behavior and surface characterization of manganese dioxide (MnO2) containing titanium disulphide (TiS2) as a cathode in aqueous lithium hydroxide (LiOH) electrolyte battery have been investigated. The electrode reaction of MnO2 in this electrolyte is shown to be lithium insertion rather than the usual protonation. MnO2 shows acceptable rechargeability as the battery cathode. The influence of TiS2 (1, 3 and 5 wt%) additive on the performance of MnO2 as a cathode has been determined. The products formed on reduction of the cathode material have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), fourier transform infrared spectroscopy (IR) and transmission electron microscopy (TEM). It is found that the presence of TiS2 to ≤3 wt% improves the discharge capacity of MnO2. However, increasing the additive content above this amount causes a decrease in its discharge capacity.  相似文献   

7.
The K2FeO4/TiB2 battery has a significant advantage of battery capacity due to their multi-electron discharge reaction both of the cathode K2FeO4 (3e) and the anode TiB2 (6e). However, the more positive reduction potential of TiB2 anode results in a lower discharge voltage plateau of K2FeO4/TiB2 battery, compared with the K2FeO4/Zn battery. The simple modification of Fe(VI) cathode with CuO additive was used to improve the cathode reduction kinetics and decrease the polarization potential in the discharge process. Another electrocatalysis media RuO2 with excellent electric conductivity is used as additive in K2FeO4 cathode to demonstrate which effect is more important for the discharge voltage plateau, electrocatalysis or electron conductivity of additives. The results show that the 5% CuO additive modified K2FeO4/TiB2 battery exhibits an enhanced discharge voltage plateau (1.5 V) and a higher cathode specific capacity (327 mAh/g). The advanced discharge voltage plateau can be due to the electrocatalysis of additives on the electrochemical reduction kinetics of Fe(VI) cathode in the whole discharge process, rather than the good electronic conductivity of additives.  相似文献   

8.
Composites of conducting polymer and single-walled carbon nanotubes (SWCNTs) are attracting great attentions in harvesting low-grade waste heat. Prefabricated SWCNTs film used as the working electrode was placed at the liquid interface between the inorganic phase (dilute sulfuric acid solution) and the organic phase consisting of dichloromethane (DCM), aniline (ANI), and 3,4-ethylenedioxythiophene (EDOT), together with a platinum wire (the counter electrode) and a silver chloride (AgCl/Ag) electrode (the reference electrode), to perform electrochemical polymerization of ANI and EDOT at the liquid interface. Thermoelectric (TE) composites of poly(ANI-co-EDOT) and SWCNTs were produced. Compared with composites from ultrasonic mixing and coating methods, the 10 wt% SWCNTs-composites in situ formed in electrochemical polymerization have the highest power factor (PF) of 41.56 ± 3.58 μW m−1 K−2, higher than the PF values of the composites formed by other two methods. The work indicates that the TE properties of ANI-EDOT copolymer/SWCNT (poly[ANI-co-EDOT]/SWCNT) composites prepared by electrochemical polymerization were better than those of the composites obtained by physical mixing the electrochemically synthesized poly(ANI-co-EDOT) with SWCNTs. Moreover, SWCNTs treated with sodium dodecylbenzene sulfonate (SDBS) could further improve the TE properties of the composites.  相似文献   

9.
A simple and effective method has been developed to synthesize a nano-sized LiFePO4/PAS (polyacenic semiconductor) composite. The LiFePO4 particles coated and connected by PAS are uniformly distributed in the range of 50-80 nm. The electronic conductivity of this material is as high as 1.2 × 10−1 S/cm due to the conductive network of PAS. In comparison with the micro-LiFePO4/PAS, the nano-LiFePO4/PAS exhibits much better rate performance. At the 12-min charge-discharge rate, the power and energy densities of the nano-LiFePO4/PAS are shown as 2063 W/kg and 412 Wh/kg, which are much higher than those of the micro-LiFePO4/PAS (1600 W/kg and 320 Wh/kg). It is especially notable that the nano-LiFePO4/PAS cathode without adding Super P shows similar electrochemical behaviors with the cathode adding Super P at all C-rates. Thus, such cathode without adding Super P will enlarge both the volume energy density and weight energy density of batteries. In addition, this cathode exhibits an excellent long-term cyclability, retaining over 95.4% of its original discharge capacity beyond 500 cycles at 0.2C rate. These favorable electrochemical performances should be attributed to its nanometric particle size and the high electronic conductivity.  相似文献   

10.
A platinum/single-wall carbon nanotube (Pt/SWCNT) film was sprayed onto a flexible indium-doped tin oxide coated polyethylene naphthalate (ITO/PEN) substrate to form a counter electrode for use in a flexible dye-sensitized solar cell using a vacuum thermal decomposition method at low temperature (120 °C). The obtained Pt/SWCNT electrode showed good chemical stability and light transmittance and had lower charge transfer resistance and higher electrocatalytic activity for the I3/I redox reaction compared to the flexible Pt electrode or a commercial Pt/Ti electrode. The light-to-electric energy conversion efficiency of the flexible DSSC based on the Pt/SWCNT/ITO/PEN counter electrode and the TiO2/Ti photoanode reached 5.96% under irradiation with a simulated solar light intensity of 100 mW cm−2. The efficiency was increased by 25.74% compared to the flexible DSSC with an unmodified Pt counter electrode.  相似文献   

11.
Single-walled carbon nanotube (SWCNT)/silicone rubber composites that can be used in fabricating compliant electrodes are prepared by spraying a mixed solution of ionic-liquid-based SWCNT gel and silicone rubber onto an elastic substrate. Subsequently, the composites are exposed to nitric acid vapor. Scanning electron microscopy and atomic force microscopy images of the composites show that the SWCNTs are finely dispersed in the polymer matrix due to the addition of the ionic liquid. Doping of the SWCNTs by nitric acid can significantly lower the sheet resistance (Rs) of the composites; samples with 4 wt% of SWCNT content exhibit the lowest Rs value (50 Ω sq?1). This sheet resistance corresponds to a conductivity value of 63 S cm?1. In addition, the composites retain a high conductivity after several tensile strains are applied. Stretching the composite sample to 300% of the original length increased the Rs value to 320 Ω sq?1 (19 S cm?1). Even after 20th stretch/release/stretch cycle, the conductivity remains constant at a value of 18 S cm?1. These results provide a scalable route for preparing highly stretchable and conductive SWCNT composites with relatively low SWCNT concentrations.  相似文献   

12.
A carbon coated Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by a sol-gel method using V2O5, H2O2, NH4H2PO4, LiOH and citric acid as starting materials, and its physicochemical properties were investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscope (TEM), and electrochemical methods. The sample prepared displays a monoclinic structure with a space group of P21/n, and its surface is covered with a rough and porous carbon layer. In the voltage range of 3.0-4.3 V, the Li3V2(PO4)3 electrode displays a large reversible capacity, good rate capability and excellent cyclic stability at both 25 and 55 °C. The largest reversible capacity of 130 mAh g−1 was obtained at 0.1C and 55 °C, nearly equivalent to the reversible cycling of two lithium ions per Li3V2(PO4)3 formula unit (133 mAh g−1). It was found that the increase in total carbon content can improve the discharge performance of the Li3V2(PO4)3 electrode. In the voltage range of 3.0-4.8 V, the extraction and reinsertion of the third lithium ion in the carbon coated Li3V2(PO4)3 host are almost reversible, exhibiting a reversible capacity of 177 mAh g−1 and good cyclic performance. The reasons for the excellent electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material were also discussed.  相似文献   

13.
We reported a new type of rechargeable lithium-ion battery consisting of a structurally integrated 0.4Li2MnO3·0.6LiMnNi0.4Co0.2O2 cathode and a hard carbon anode. The drawback of the high irreversible capacity loss of both electrodes, occurring at the first charge/discharge process, can be counterbalanced each other. The battery shows good reversibility with a sloping voltage from 1.5 V to 4.5 V and delivers a capacity of 105 mA h g−1 and a specific energy of 315 W h kg−1 based on the total weight of the both active electrode materials.  相似文献   

14.
Li Zhang 《Carbon》2010,48(9):2582-55
Raman microscopy and spectroelectrochemistry with polymer electrolyte gating is developed to study the effect of charging on Raman spectra of individual single-wall carbon nanotubes (SWCNTs) and bundles. The Raman spectra of a small bundle, consisting of well-separated features from a metallic and a semiconducting SWCNT, have been obtained at different electrochemical charging levels. The broad Fano peak of the metallic SWCNT exhibits an appreciable frequency upshift and simultaneous line narrowing when the charging level, either positive or negative, is increased, in agreement with the presence of a Kohn anomaly in metallic SWCNTs. The radial breathing mode of the metallic tube also shows a similar but much weaker dependence on the charging potential. While the G mode frequencies of the semiconducting SWCNT also increase with the increasing charging level, the magnitude of such change is much smaller than in the metallic SWCNT. At high negative charging potentials the G peak of the semiconducting SWCNT exhibits a larger upshift than its G+ peak, leading to the observation of merging of these two peaks. However, both G+ and G peaks of the semiconducting SWCNT become broader at high charging levels, which are not predicted from previous theoretical studies.  相似文献   

15.
Carbon perfectly coated LiFePO4 cathode materials are synthesized by carbon-thermal reduction method using polystyrene (PS) spheres as carbon source. The PS spheres with diameters of 150–300 nm used for the pyrolysis reaction not only inhibit the particle growth but also lead to uniform distribution of carbon coating on the surface of LiFePO4 particles. Rate capability and cycling stability of LiFePO4/C with the carbon contents ranging from 1.4 wt% to 3.7 wt% are investigated at −20 °C. The LiFePO4/C with 3.0 wt% C exhibits excellent electrochemical capability at low temperature, which delivers 147 mAh g−1 at 0.1 C. After 100 cycles at a charge–discharge rate of 1 C, there is still 100% of initial capacity retained for the LiFePO4/C electrode at −20 °C. According to the transmission electron microscope analysis and cyclic voltammetry measurement, this can be attributed to the good carbon coating morphology and optimal carbon coating thickness.  相似文献   

16.
X.H. Rui  J. Liu  C.H. Chen 《Electrochimica acta》2010,55(22):6761-6767
The carbon coated monoclinic Li3V2(PO4)3 (LVP/C) cathode materials are synthesized via a sol-gel method using oxalic acid as a chelating reagent and maltose as a carbon source. The effect of carbon content on the synthesis of LVP/C composites is investigated using X-ray diffraction, scanning electron microscopy, galvanostatic charge/discharge and DC resistance measurements. The results show that, among the LVP/C powders with different carbon content (5.7, 9.6, 11.6 and 15.3 wt.%), the sample with 11.6 wt.% carbon content gives rise to the corresponding (LVP/C) ∥Li half cell with a low DC resistance and superior electrochemical performance, especially with excellent rate capability. Its discharge capacity decreases by only 7.2% from 125 mAh g−1 at 0.5 C to 116 mAh g−1 at 5 C between 3.0 and 4.3 V. The maltose-based sol-gel method is feasible for the preparation of LVP/C composites for high power lithium ion batteries.  相似文献   

17.
To achieve a high-energy-density lithium electrode, high-density LiFePO4/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO4 as a precursor, glucose as a C source, and Li2CO3 as a Li source, in a pipe furnace under an atmosphere of 5% H2-95% N2. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO4/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO4/carbon composite powder with a carbon content of 7% reached 1.80 g m−3. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g−1, respectively, with a volume capacity of 300.6 mAh cm−3, at a 0.1C rate. At a rate of 5C, the LiFePO4/carbon composite shows a high discharge capacity of 98.3 mAh g−1 and a volume capacity of 176.94 mAh cm−3.  相似文献   

18.
Hard carbon/lithium composite anode electrode is prepared to reduce the initial irreversible capacity of hard carbon, which hinders practical application of hard carbon in lithium ion batteries, by introducing lithium into hard carbon. Lithium foil effectively compensates the irreversible capacity of hard carbon in the first cycle. A full cell using LiCoO2 cathode and the composite anode shows much higher initial coulombic efficiency than that of a cell using LiCoO2 cathode and hard carbon anode. This paves the way to reduce the large initial irreversible capacity of hard carbon. Besides that, this composite anode enables conductive polymer/sulfur composite cathode to be used in Li-ion batteries with non-lithiated anode materials.  相似文献   

19.
This work provides kinetic and transport parameters of Li-ion during its extraction/insertion into thin film LiNi0.5Mn1.5O4 free of binder and conductive additive. Thin films of LiNi0.5Mn1.5O4 (0.2 μm thick) were prepared on electronically conductive gold substrate utilizing the electrostatic spray deposition technique. High purity LiNi0.5Mn1.5O4 thin film electrodes were observed with cyclic voltammetry, to exhibit very sharp peaks, high reversibility, and absence of the 4 V signal related to the Mn3+/Mn4+ redox couple. The electrode subjected to 100 CV cycles of charge/discharge delivered a capacity of 155 mAh g−1 on the first cycle and sustained a good cycling behavior while retaining 91% of the initial capacity after 50 cycles. Kinetics and mass-transport of Li-ion extraction at LiNi0.5Mn1.5O4 thin film electrode were investigated by means of electrochemical impedance spectroscopy. The apparent chemical diffusion coefficient (Dapp) value determined from EIS measurements changed depending on the electrode potential in the range of 10−10-10−12 cm2 s−1. The Dapp profile shows two minimums at the potential values close to the peak potentials of the corresponding cyclic voltammogram.  相似文献   

20.
Single crystalline cubic spinel LiMn2O4 nanowires were synthesized by hydrothermal method and the precursor calcinations. The phase structures and morphologies were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). Galvanostatic charging/discharging cycles of as-prepared LiMn2O4 nanowires were performed in an aqueous LiNO3 solution. The initial discharge capacity of LiMn2O4 nanowires was 110 mAh g−1, and the discharge capacity was still above 100 mAh g−1 after 56 cycles at 10C-rate, and then 72 mAh g−1 was registered after 130 cycles. This is the first report of a successful use of single crystalline spinel LiMn2O4 nanowire as cathode material for the aqueous rechargeable lithium battery (ARLB).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号