共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
J. Kafka 《Electrochimica acta》2008,53(25):7467-7474
This paper describes a label-free detection system for DNA strands based on gold electrodes and impedance measurements. A single-stranded 18 mer oligonucleotide (ssDNA) was immobilised via a thiol linker on gold film electrodes and served as probe DNA. Residual binding places were filled with mercaptobutanol. The sensor surface clearly distinguished between complementary and non-complementary target ssDNA. Additionally, detection of single base pair mismatches was possible. The electrode was impedimetrically characterised in the presence of the redox system ferri/ferrocyanide before and after DNA hybridisation. Impedance analysis showed that the charge transfer resistance, Rct, was increasing after DNA duplex formation, whereas the capacitive properties remain rather unaltered. The relative change of Rct was used as sensor parameter. Concentrations in the nanomolar range have been detected by the system. The sensor was reusable because a denaturation protocol allowed effective double strand dissociation without changing the surface properties of the electrode substantially. The time for DNA detection have been reduced to about 15 min including regeneration. The sensor signal was amplified by about 20% after binding of a negatively charged molecule to the formed DNA duplex. The sensor was also capable of sensing longer target ssDNA strands as shown with 25 mer and 37 mer oligonucleotides. 相似文献
3.
An electrochemical impedance immunosensor for the detection of Escherichia coli was developed by immobilizing anti-E. coli antibodies at an Au electrode. The immobilization of antibodies at the Au electrode was carried out through a stable acyl amino ester intermediate generated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydrosuccinimide (NHS), which could condense antibodies reproducibly and densely on the self-assembled monolayer (SAM). The surface characteristics of the immunosensor before and after the binding reaction of antibodies with E. coli were characterized by atomic force microscopy (AFM). The immobilization of antibodies and the binding of E. coli cells to the electrode could increase the electro-transfer resistance, which was directly detected by electrochemical impedance spectroscopy (EIS) in the presence of Fe(CN)63−/Fe(CN)64− as a redox probe. A linear relationship between the electron-transfer resistance and the logarithmic value of E. coli concentration was found in the range of E. coli cells from 3.0 × 103 to 3.0 × 107 cfu mL−1 with the detection limit of 1.0 × 103 cfu mL−1. With preconcentration and pre-enrichment steps, it was possible to detect E. coli concentration as low as 50 cfu/mL in river water samples. 相似文献
4.
Electrochemical impedance spectroscopy (EIS) was used to study the capacitance and ion transport properties of fuel cell catalyst layers. It was found that limiting capacitance correlates with active area. The capacitance per gram of catalyst was calculated and is proposed as a measure of catalyst utilization. Results obtained with catalyst layers immobilized on glassy carbon electrodes agree very well with results obtained with gas diffusion electrodes. EIS was also used to study ion conductivity and active area in fuel cell electrodes that contain the electroactive probe Os(bpy)32+. Together, these results validate the hypothesis that the non-ideal behavior of fuel cell electrodes is due to variations of conductivity across the layer, rather than variations in capacitance. 相似文献
5.
Juchen Guo Ann Sun Xilin Chen Chunsheng Wang Ayyakkannu Manivannan 《Electrochimica acta》2011,(11):8494
The effects of carbonization process and carbon nanofiber/nanotube additives on the cycling stability of silicon–carbon composite anodes were investigated by monitoring the impedance evolution during charge/discharge cycles with electrochemical impedance spectroscopy (EIS). Three types of Si–C anodes were investigated: the first type consisted of Si nanoparticles incorporated into a network of carbon nanofibers (CNFs) and multi-walled carbon nanotubes (MWNTs), with annealed polymer binder. The second type of Si–C anodes was prepared by further heat treatment of the first Si–C anodes to carbonize the polymer binder. The third Si–C anode was as same as the second one except no CNFs and MWNTs being added. Impedance analysis revealed that the carbonization process stabilized the Si–C anode structure and decreased the charge transfer resistance, thus improving the cycling stability. On the other hand, although the MWNTs/CNFs additives could enhance the electronic conductivity of the Si–C anodes, the induced inhomogeneous structure decreased the integrity of the electrode, resulting in a poor long term cycling stability. 相似文献
6.
Polyaniline (PANI) film electrodeposited in HCl medium using cyclic voltammetry (CV) with an upper potential limit of 0.90 V, exhibited an inductive behavior. PANI films deposited with different conditions were subjected to various applied potentials and the impedance characteristics were recorded through electrochemical impedance spectroscopy (EIS). The impedance results clearly reveal the existence of inductive behavior to PANI. Inductive behavior was observed for PANI films deposited with conditions which favor benzoquinone/hydroquinone (BQ/HQ) formation and further evidenced by X-ray photoelectron spectroscopy (XPS). A comparative analysis of the EIS and XPS results of PANI films prepared under similar conditions with the upper potential limits of 0.75 and 0.90 V, respectively, clearly documented that the presence of BQ/HQ, the degradation product of PANI, formed during the electrochemical polymerization at the upper potential limits causes inductive behavior to PANI. 相似文献
7.
Electrochemical impedance spectroscopy (EIS) was applied to the optimization of automotive electrodeposited coatings, container interior coatings and industrial maintenance coatings. The electrochemical impedance data were used to predict corrosion protection, film porosity, solution absorption into the coatings and film delamination properties. Variables such as resin contents, crosslink densities, cure temperatures, and solvent types and contents were evaluated for these various types of coatings. In general the electrochemical impedance data correlated well with conventional exposure tests results such as salt fog, cyclic scab corrosion and delamination tests. The impedance spectra permits a rather rapid (15–75 min per sample) assessment of the film's characteristics even when no visually observable changes have occurred. Electrochemical impedance spectroscopy provides a technique to optimize coatings while reducing the time of coating evaluations and gives insight into the chemical and physical properties of the coatings. 相似文献
8.
In an attempt to provide an insight into detection of specific viruses in biological samples, we report on quantitation of influenza A virus (IAV) in samples containing large amounts of extraneous bovine serum albumin (BSA), foetal bovine serum (FBS) and hepatitis B virus (HBV) vaccine. Detection was carried out using electrochemical impedance spectroscopy (EIS) with an antibody-neutravidin-thiol architecture immobilized on the surface of an Au electrode. A linear response of the EIS signal was observed for IAV concentrations ranging from 0 to almost 64 ng/mL. However, saturation of the EIS response was recorded for greater concentrations and only a 6% increase in signal occurred when the IAV concentration increased to 128 ng/mL. The limit of detection, determined at 8 ng/mL, remained relatively unaffected by the environment composed of 50 ng/mL of HBV and 12.5% of FBS. 相似文献
9.
An electrochemical impedance spectroscopy (EIS) study of electrodes in a phosphoric acid loaded polybenzimidazole (PBI) membrane fuel cell is reported. Using EIS, the effect of electrode parameters such as Pt catalyst wt%, acid doping in PBI and PTFE baesd electrodes and catalyst heat treatment on kinetic and mass transport characteristics is characterised. The influence of cell parameters of current load, temperature and oxidant gas on response is demonstrated and interpreted using an equivalent circuit model. For polarisable electrodes under small to medium steady-state current operation, the model was capable of identifying electrodes with the best kinetic or mass transport behaviour and classifying behaviour in terms of relative performance. 相似文献
10.
A. Rodríguez-López D. Torres-Torres J. Mojica-Gomez C. Estrada-Arteaga R. Antaño-López 《Electrochimica acta》2011,(23):8078
Magnetite nanoparticles were supported on carbon paste electrode and characterized by low scan rate voltammetry and electrochemical impedance spectroscopy (EIS) to obtain mechanistic information related to its oxidation and reduction in acid media.The voltammograms showed only one reduction and one oxidation peak for the supported magnetite, which were attributed to formation of ferrous ion and ferric oxide, respectively. Both peaks are fairly wide, indicating complex mechanisms.Using EIS, a mechanism showing up to three time constants, capacitive all of them, was evidenced, both in anodic and cathodic domain. These were attributed to charge transfer at the highest frequencies, adsorption of generated species at intermediate frequencies, and proton adsorption at low frequencies. Discussion about the nature of the adsorbed species and the concerned mechanism for each domain is developed. 相似文献
11.
Study of passivation of Al and Al-Sn alloys in borate buffer solutions using electrochemical impedance spectroscopy 总被引:1,自引:0,他引:1
S. Gudi?M. Kliški? 《Electrochimica acta》2002,47(18):3009-3016
Properties of thin oxide films on Al and Al-Sn alloys (with Sn content of 0.02, 0.09, 0.20 and 0.40 wt.%) formed either naturally or anodically in borate buffer solutions were investigated by means of electrochemical impedance spectroscopy. Equivalent circuits have been proposed that completely illustrate the Al(Al-Sn alloy)/oxide film/electrolyte systems examined, and properties of oxide films were determined. The stability (thickness and resistance) of oxide films has been found to increase with increased Sn content in the alloy, with increased passivation potential, and with longer time of anodising. The increase in temperature of anodising significantly reduces impedance in systems observed. 相似文献
12.
Electrochemical behaviour of polyaniline–polyurethane (PANi–PU) antifouling coating in 3.5 wt% NaCl is studied by electrochemical impedance spectroscopy (EIS). A thick coating (∼1 mm) of 10, 15 and 20% PANi in marine grade PU, is cast over corrosion resistant aluminium alloy 2024 and its impedance characteristics are measured by EIS and compared with neat PU. On addition of 10% PANi, the impedance of the coating drastically comes down from 109 to 107 Ω. 20% is the maximum processable amount of PANi for the selected PU system. The coatings are exposed to 3.5 wt% NaCl and its impedance characteristics are monitored as a function of time. Changes in the impedance characteristics of the systems were found to occur as a function of the exposure time in all cases, though their evolution with time showed marked differences with PANi content. Water sorption and break down frequency are derived from the experimental results and analysed. 相似文献
13.
The interaction of bovine serum albumin (BSA) protein with copper in phosphate buffer solution has been studied by a combination of electrochemical impedance spectroscopy (EIS) close to the open circuit potential, with simultaneous monitoring by the electrochemical quartz crystal microbalance (EQCM), in order to throw light on BSA adsorption. Copper films were electroplated onto gold quartz crystals and mounted in the EQCM. Experiments were conducted in the presence and absence of dissolved oxygen and of BSA and the results show the influence of O2 on the protein/metal interaction and also show specific interactions between BSA and copper. The good reproducibility obtained in these experiments suggests future application to other systems and which should lead to a better understanding of the use of such types of protein as corrosion inhibitors. 相似文献
14.
概括了电化学交流阻抗谱的基本原理,介绍了电化学阻抗谱在缓蚀剂研究中的应用进展,并对电化学阻抗谱在腐蚀科学领域其他方面的应用进行了展望。 相似文献
15.
Anodic oxidation of molybdenum in weakly acidic, nearly neutral and weakly alkaline electrolytes was studied by voltammetric and electrochemical impedance spectroscopic measurements in a wide potential and pH range. Current vs. potential curves were found to exhibit two pseudo-Tafel regions suggesting two parallel pathways of the dissolution process. Electrochemical impedance spectra indicated the presence of at least two reaction intermediates. X-ray photoelectron spectroscopic (XPS) results pointed to the formation of an oxide containing Mo(IV), Mo(V) and Mo(VI), the exact ratio between different valence states depending on potential and pH of the solution. A physico-chemical model of the processes is proposed and a set of kinetic equations for the steady-state current vs. potential curve and the impedance response are derived. The model is found to reproduce quantitatively the current vs. potential curves and impedance spectra at a range of potentials and pH and to agree qualitatively with the XPS results. Subject to further improvement, the model could serve as a starting point for the optimization of the electrochemical fabrication of functional molybdenum oxide coatings. 相似文献
16.
Electrochemical impedance spectroscopy (EIS) was used to understand the electrochemical mechanisms which appear in dye-sensitized solar cells (DSSCs). This qualitative and quantitative technique permits identification of the phenomena proceeding within the different elements composing the cell and at their interfaces.In this study, the classical conducting glass substrate was replaced by a protected stainless steel (304 type) substrate as the counter-electrode (cathode) in dye-sensitized solar cells. Platinum was deposited at the substrate surface to optimize the charge transfer resistance of the electrode.After a few days of immersion in the electrolytic solution, stainless steel substrates coated with low thickness of Pt show pitting corrosion due to iodine. Defects in the Pt layer such as discontinuity of the film and micro-cracks may explain the corrosion of the stainless steel substrate. However the Pt layer degradation is retarded for thicker films. On the other hand, polished substrates show a better behaviour probably due to the elimination of the defects on the stainless steel surface.Electrolytic solution was optimized. For this, components such as 1-butyl-3-methylimidazolium iodide (BMII), guanidine thiocyanate (GT) and 4-tert-butylpyridine (TBP) were added. No corrosion phenomena on stainless steel 304 appeared within 3 days when TBP was added. This means that TBP acts as a corrosion inhibitor.A schematic equivalent circuit is also proposed. 相似文献
17.
The chemical reactivity of oxide-free weld joints made of thermo-hardened carbon steel in different electrolytes was investigated by chronopotentiometry, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The objective was to identify the role of different electrolyte constituents on the electrochemical behaviour of the different materials constituting the weld joint, namely the weld material, the heat affected zone (HAZ) and the base carbon steel. Hardness measurements by Vickers and nano-indentation techniques indicated that the weld material is harder than the heat affected zone and the base carbon steel due to a Widmanstätten ferrite-type structure of the weld. Electrochemical measurements were performed on polished cross-sections on these weld joints in four electrolytes containing different additives. The weld joints are active in all tested electrolytes and the composition of the electrolytes dictates the dissolution even though the main chemical reactivity mechanism remains unaffected. A balanced presence of oxidative agent, inhibitor and HF in the electrolyte is necessary to obtain a homogeneous chemical attack on weld joint and Si-rich inclusion removal in weld material, while avoiding excessive attack roughening and/or pitting of the carbon steel. 相似文献
18.
A new type of transfer function is described in this work as a tool to give support to modeling in electrochemical kinetics. It is based on the response analysis with frequency to a sine wave potential modulation applied to an electrode, of a Raman band, the intensity of which is proportional to the response of surface concentration of an adsorbed species.A set-up, consisting of a Raman spectrometer with a CCD detector from which the Raman intensity was defined and extracted to be converted into a tension sent to the input of a multichannel FRA, was implemented. The procedure for extracting the Raman band intensity is explained and was validated by using, as a substitute to the Raman band, a LED light.The method was applied to the study of the polyaniline doping process in a pH range around 3. Five input channels of the FRA were devoted to Raman bands characterizing leucoemeraldine, emeraldine base and/or salt. For pH lower than 3, the concentrations of all moieties are in phase with the charge, while above 3, emeraldine base shows a significant phase lag. This behavior is consistent with a model in progress involving two electrochemical steps and a chemical one. 相似文献
19.
Min Ku Jeon 《Electrochimica acta》2007,53(2):447-452
A stability test of a direct methanol fuel cell (DMFC) was carried out by keeping at a constant current density of 150 mA cm−2 for 435 h. After the stability test, maximum power density decreased from 68 mW cm−2 of the fresh membrane-electrode-assembly (MEA) to 34 mW cm−2 (50%). Quantitative analysis on the performance decay was carried out by electrochemical impedance spectroscopy (EIS). EIS measurement of the anode electrode showed that the increase in the anode reaction resistance was 0.003 Ω cm2. From the EIS measurement results of the single cell, it was found that the increase in the total reaction resistance and IR resistance were 0.02 and 0.05 Ω cm2, respectively. Summarizing the EIS measurement results, contribution of each component on the performance degradation was determined as follows: IR resistance (71%) > cathode reaction resistance (24%) > anode reaction resistance (5%). Transmission electron microscopy (TEM) results showed that the average particle size of the Pt catalysts increased by 30% after the stability test, while that of the PtRu catalysts increased by 10%. 相似文献
20.
We investigated the insulation performance of sub-micrometer parylene C films over time using electrochemical impedance spectroscopy (EIS). For this, interdigitated electrodes were fabricated and completely encapsulated with parylene C in thicknesses of 50, 100, 200, and 500 nm. The EIS was measured in phosphate buffered saline (PBS) solution under an accelerated aging condition at 90 °C over 45 days. To analyze the EIS data, the equivalent circuit models of coating at different stages of coating degradation were used and the lumped circuit parameters of the best fitted equivalent circuit model were extracted by curve fitting. The analysis of impedance using the equivalent circuit model and the FTIR measurements suggest that sub-micrometer parylene C coatings exhibited delamination resulting from water diffusion from the top surface as soon as being immersed in PBS solution, although the degree of delamination varied depending on the film thickness. The penetration of water through sub-micrometers thick parylene C films can occur as quickly as the film is in contact with solution, unlike for thicker coatings in several micrometers where water diffusion would be saturated before water reaches the bottom surface of the coating. 相似文献