首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
InBaCo4−xZnxO7 oxides have been synthesized and characterized as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC). The effect of Zn substitution for Co on the structure, phase stability, thermal expansion, and electrochemical properties of the InBaCo4−xZnxO7 has been investigated. The increase in the Zn content from x = 1 to 1.5 improves the high temperature phase stability at 600 °C and 700 °C for 100 h, and chemical stability against a Gd0.2Ce0.8O1.9 (GDC) electrolyte. Thermal expansion coefficient (TEC) values of the InBaCo4−xZnxO7 (x = 1, 1.5, 2) specimens were determined to be 8.6 × 10−6 to 9.6 × 10−6/°C in the range of 80–900 °C, which provides good thermal expansion compatibility with the standard SOFC electrolyte materials. The InBaCo4−xZnxO7 + GDC (50:50 wt.%) composite cathodes exhibit improved cathode performances compared to those obtained from the simple InBaCo4−xZnxO7 cathodes due to the extended triple-phase boundary (TPB) and enhanced oxide-ion conductivity through the GDC portion in the composites.  相似文献   

2.
LiCoyMn2−yO4 (y = 0.00, 0.04 and 0.08) were synthesized using a combustion method, and the electrochemical properties were examined in the voltage range of 3.5–5.0 V. The XRD patterns of the synthesized samples were similar, and the samples had a spinel phase structure. The first charge capacity curves exhibited an inflection in the voltage range of 4.2–5.0 V, where it is believed that additional, previously unreported phase transition occurs. The voltage vs. x curves for the first to fifth cycle exhibited two distinct voltage plateaus, corresponding well to a two-phase reaction and a one-phase reaction, respectively, as reported previously. For the voltage range of 3.5–5.0 V, the first discharge capacity increased and the cycling performance improved as y increased. Among these samples, LiCo0.08Mn1.92O4 had the largest first discharge capacity of 132.5 mA h/g at 600 μA/cm2, and its cycling efficiency was 91.1% at the 15th cycle in the voltage range of 3.5–5.0 V.  相似文献   

3.
Li3xLa2/3−xTiO3 (LLTO) powder with different lithium contents (nominal 3x = 0.03–0.75) was synthesized via a simple sol–gel route and then calcination of gel-derived precursor at 900 °C which was much below the calcination temperature required for synthesizing the LLTO powder via solid state reaction route. The LLTO powder of sub-micron sized particles, derived from such sol–gel method, showed almost no aggregation. Starting from the sol–gel-derived powder, the LLTO ceramics with different lithium contents were prepared at different sintering temperatures of 1250 and 1350 °C. It demonstrated that our sol–gel route is quite simple and convenient compared to the previous sol–gel method and requires lower temperature for the LLTO. Our results also illustrated that lithium content significantly affects the structure and ionic conductivity of the LLTO ceramics. The dependence of the ionic conductivity on the lithium content, lattice structure, microstructure and sintering temperature was investigated systematically.  相似文献   

4.
A series of LiMn0.9Fe0.1−xMgxPO4/C (x = 0, 0.01, 0.02, 0.05) was synthesized by a solid state reaction, and the effect of synthesis temperature and Fe/Mg ratio on the electrochemical performance of the obtained materials was investigated by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and electrochemical measurements. The electrochemical performance of the Fe and Mg co-substituted LiMnPO4 was obviously improved with increasing synthesis temperature from 650 to 800 °C, but further increase led to an abrupt capacity loss due to the impurity formation. The Fe and Mg co-substitution could remarkably enhance the electrochemical activity of LiMnPO4 compared with the Fe substitution only, but too high level of Mg doping would worsen the rate capability. The LiMn0.9Fe0.09Mg0.01PO4/C synthesized at 800 °C demonstrated the optimum electrochemical performance with a high capacity and an excellent rate capability. Even discharged at the rate of 10 C, a capacity of 60 mAh g−1 was still observed.  相似文献   

5.
A milling process to reduce kaolin to amorphous phase in the presence of KH2PO4 or NH4H2PO4 and allow mechanochemical (MC) reaction for incorporation of KH2PO4 and NH4H2PO4 into the kaolin structure was investigated in this work. Mixtures of kaolin and KH2PO4 and NH4H2PO4 in separate systems were prepared by milling in a planetary ball mill. Tests with kaolin contents ranging from 25 to 75 wt.% and mill rotational speeds from 200 to 700 rpm were performed to evaluate incorporation of KH2PO4 and NH4H2PO4 and release of K+, NH4+ and PO43− ions into solution. Analyses by XRD, DTA and ion chromatography indicated that the MC process was successfully applied to incorporate both KH2PO4 and NH4H2PO4 into the amorphous kaolin structure. Release of K+ and PO43− ions from the system (kaolin-KH2PO4) when dispersed in water for 24 h reached only up to 10%. Under similar conditions for the system (kaolin-NH4H2PO4), release of NH4+ and PO43− ions reached between 25 and 40%. These results indicated that the MC process can be developed to allow amorphous kaolin to act as a carrier of K+, NH4+ and PO43− nutrients to be released slowly for use as fertilizer.  相似文献   

6.
7.
J. Jiang 《Electrochimica acta》2005,50(24):4778-4783
Samples of the layered cathode materials, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/12, 1/4, 5/12, and 1/2), were synthesized at 900 °C. Electrodes of these samples were charged in Li-ion coin cells to remove lithium. The charged electrode materials were rinsed to remove the electrolyte salt and then added, along with EC/DEC solvent or 1 M LiPF6 EC/DEC, to stainless steel accelerating rate calorimetry (ARC) sample holders that were then welded closed. The reactivity of the samples with electrolyte was probed at two states of charge. First, for samples charged to near 4.45 V and second, for samples charged to 4.8 V, corresponding to removal of all mobile lithium from the samples and also concomitant release of oxygen in a plateau near 4.5 V. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples with x = 1/4, 5/12 and 1/2 charged to 4.45 V do not react appreciably till 190 °C in EC/DEC. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples charged to 4.8 V versus Li, across the oxygen release plateau, start to significantly react with EC/DEC at about 130 °C. However, their high reactivity is similar to that of Li0.5CoO2 (4.2 V) with 1 μm particle size. Therefore, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples showing specific capacity of up to 225 mAh/g may be acceptable for replacing LiCoO2 (145 mAh/g to 4.2 V) from a safety point of view, if their particle size is increased.  相似文献   

8.
Highly oriented (100) diamond films have been successfully grown on SixGe1−x (100) thin films by bias enhanced nucleation (BEN) in microwave plasma chemical vapor deposition (MPCVD) system. Raman spectra show the 1332 cm−1 peak which proves the formation of diamond. Diamond nucleation density on SixGe1−x substrate estimated by scanning electron microscopy is higher than 109 cm−2. The interface between diamond and SixGe1−x substrate was characterized by transmission electron microscopy (TEM). About 20 nm decrease in thickness of the SixGe1−x film was observed after bias enhanced nucleation step. TEM shows the existence of silicon carbide and heteroepitaxial diamond grains grown on SixGe1−x substrate. Characterization from high-resolution TEM on the specimen of short time deposition reveals that a number of epitaxial diamond grains were directly nucleated on SixGe1−x with {111} interplanar spacing ratio of diamond and SixGe1−x of 2:3. The diamond nucleation is found to be preferred on the ridge position of the rough substrate surface. Diamond {100} facets were quickly developed in the early stage of growth.  相似文献   

9.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

10.
The electronic and local atomic structural characterization of a promising cathode material, LiFe0.4Mn0.6PO4, for a lithium rechargeable battery was performed by in situ X-ray absorption fine structure (XAFS) on both Mn and Fe K-edges. Upon delithiation, the X-ray absorption near edge structure (XANES) spectra analysis showed that the Fe2+/Fe3+ electrochemical reaction was two times faster than that of Mn2+/Mn3+. The Fe and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectra were effectively altered with different spectral behaviors for the local atomic structure near Fe and Mn during delithiation. Alternatively, the EXAFS spectra of LiFePO4 changed significantly and those of LiMnPO4 were constant through all delithiations for the corresponding reference materials of LiFePO4 and LiMnPO4. The present study with XAFS characterization demonstrates that initially delithiated Fe-rich domains at 3.5 V can promote more effective local structural change of the neighboring Mn-rich domains during the next second plateau at 4.1 V, which can ease delithiation in the Mn-rich domains through more flexible reaction of the local structure in the Mn octahedra.  相似文献   

11.
High-voltage LiNi0.5Mn1.5O4 spinels were synthesized by a low temperature solution combustion method at 400 °C, 600 °C and 800 °C for 3 h. The phase composition, structural disordering, micro-morphologies and electrochemical properties of the products were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and constant current charge–discharge test. XRD analysis indicated that single phase LiNi0.5Mn1.5O4 powders with disordered Fd-3m structures were obtained by the method at 400 °C, 600 °C and 800 °C. The crystallinity increased with increasing preparation temperatures. XRD and FTIR data indicated that the degree of structural disordering in the product prepared at 800 °C was the largest and in the product prepared at 600 °C was the least. SEM investigation demonstrated that the particle size and the crystal perfection of the products were increased with increasing temperatures. The particles of the product prepared at 600 °C with ~200 nm in size are well developed and homogeneously distributed. Charge/discharge curves and cycling performance tests at different current density indicated that the product prepared at 600 °C had the largest specific capacity and the best cycling performance, due to its high purity, high crystallinity, small particle size as well as moderate amount of Mn3+ ions.  相似文献   

12.
Heterogeneous Ag/Ag3PO4/BiPO4 photocatalyst was synthesized by a one-step low temperature chemical bath method and exhibited better photocatalytic activity and better stability than those of individual Ag3PO4 or BiPO4 nanoparticles for photodegradation of organic compounds (Rhodamine B) in the absence of electron accepters under visible light (λ>420 nm). The enhanced photocatalytic performance is mainly ascribed to the strong visible-light absorption originating from high efficient separations of photogenerated electron–hole pairs through Ag3PO4/BiPO4 and Ag/Ag3PO4 heterostructures.  相似文献   

13.
Fe1−xCox nanowires in self-assembled arrays with varying compositions were produced by the template-assisted pulsed electrochemical deposition method. The structural and magnetic properties of the arrays were investigated using several experimental techniques. TEM analyses indicated that the nanowires were regular, uniform, 8 μm in length and 50 nm in diameter. The results of X-ray diffraction indicated that the body-centered-cubic (bcc) (α), face-centered-cubic (fcc) (γ), and hexagonal-close-packed (hcp) () Fe–Co phases appeared in different compositions. Magnetic measurements showed that the coercivity and squareness of the hysteresis loops of the Fe1−xCox changed with their compositions, which may be attributable to shape anisotropy. The room temperature 57Fe Mössbauer spectra of the arrays of the Fe1−xCox nanowires revealed strong shape anisotropy.  相似文献   

14.
The mechanism transition of lithium transport through a Li1−δMn2O4 composite electrode caused by the surface-modification and temperature variation was investigated using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and the potentiostatic current transient technique. From the analyses of the ac-impedance spectra, experimentally measured from unmodified Li1−δMn2O4 and surface-modified Li1−δMn2O4 with MgO composite electrodes, the internal cell resistance of the MgO-modified Li1−δMn2O4 electrode was determined to be much smaller in value than that of the unmodified electrode over the whole potential range. Moreover, from the analysis of the anodic current transients measured on the MgO-modified Li1−δMn2O4 electrode, it was found that the cell-impedance-controlled constraint at the electrode surface is changed to a diffusion-controlled constraint, which is characterised by a large potential step and simultaneously by a small amount of lithium transferred during lithium transport. This strongly suggests that the internal cell resistance plays a significant role in determining the cell-impedance-controlled lithium transport through the MgO-modified Li1−δMn2O4 electrode. Furthermore, from the temperature dependence of the internal cell resistance and diffusion resistance in the unmodified Li1−δMn2O4 composite electrode measured by GITT and EIS, it was concluded that which mechanism of lithium transport will be operative strongly depends on the diffusion resistance as well as on the internal cell resistance.  相似文献   

15.
Electrocatalysts of the general formula IrxRu1−xO2 were prepared using Adams’ fusion method. The crystallite characterization was examined via XRD, and the electrochemical properties were examined via cyclic voltammetry (CV) in, linear sweep voltammetry (LSV) and chronopotentiometry measurements in 0.5 M H2SO4. The electrocatalysts were applied to a membrane electrode assembly (MEA) and studied in situ in an electrolysis cell through electrochemical impedance spectroscopy (EIS) and stationary current density–potential relations were investigated. The IrxRu1−xO2 (x = 0.2, 0.4, 0.6) compounds were found to be more active than pure IrO2 and more stable than pure RuO2. The most active electrocatalyst obtained had a composition of Ir0.2Ru0.8O2. With an Ir0.2Ru0.8O2 anode, a 28.4% Pt/C cathode and the total noble metal loading of 1.7 mg cm−2, the potential of water electrolysis was 1.622 V at 1 A cm−2 and 80 °C.  相似文献   

16.
A simple and effective method, ethylene glycol-assisted co-precipitation method, has been employed to synthesize LiNi0.5Mn1.5O4 spinel. As a chelating agent, ethylene glycol can realize the homogenous distributions of metal ions at the atomic scale and prevent the growth of LiNi0.5Mn1.5O4 particles. XRD reveals that the prepared material is a pure-phase cubic spinel structure (Fd3m) without any impurities. SEM images show that it has an agglomerate structure with the primary particle size of less than 100 nm. Electrochemical tests demonstrate that the as-prepared LiNi0.5Mn1.5O4 possesses high capacity and excellent rate capability. At 0.1 C rate, it shows a discharge capacity of 137 mAh g−1 which is about 93.4% of the theoretical capacity (146.7 mAh g−1). At the high rate of 5 C, it can still deliver a discharge capacity of 117 mAh g−1 with excellent capacity retention rate of more than 95% after 50 cycles. These results show that the as-prepared LiNi0.5Mn1.5O4 is a promising cathode material for high power Li-ion batteries.  相似文献   

17.
K.M. Shaju 《Electrochimica acta》2003,48(11):1505-1514
Layered Li(Ni1/2Mn1/2)O2 was prepared by the solution and mixed hydroxide methods, characterised by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and studied by cyclic voltammetry (CV) and charge discharge cycling in CC and CCCV modes at room temperature (r.t.) and at 50 °C. The XPS studies show about 8% of Ni3+ and Mn3+ ions are present in Li(Ni2+1/2Mn1/24+)O2 due to valency-degeneracy. The compound prepared at 950 °C, 12 h, solution method gives a second cycle discharge capacity of 150 mA h g−1 (2.5-4.4 V) at a specific current of 30 mA g−1 and retains 137 mA h g−1 at the end of 40 cycles. CV shows that the redox process at 3.7-4.0 V corresponds to Ni2+↔Ni4+ and clear indication of Mn3+/4+ couple was noted at 4.2-4.5 V. The observed capacity-fading (2.5-4.4 V) is shown to be contributed by the polarisation at the end of charging. The cathodic capacity is stable up to 40 cycles in the voltage window, 2.5-4.2 V both at room temperature and 50 °C.  相似文献   

18.
Li[Ni(1/3−z)Co(1/3−z)Mn(1/3−z)Mgz]O2 (z = 0, 0.04) positive electrode materials were synthesized via a co-precipitation method. These materials have α-NaFeO2 () structure, as confirmed by X-ray diffraction (XRD) studies. Cation mixing in Li layer seemed to be decreased by Mg substitution as examined by Rietveld refinements of XRD data. Spherical morphologies were observed for the as-synthesized final products by scanning electron microscopy. Their electrochemical properties during charge and discharge were discussed. When magnesium ions are substituted, the initial reversible capacity reduced. However, the substitution for Mn sites in Li[Ni1/3Co1/3Mn1/3]O2 did not decrease the capacity because Mn sites substitution did not result in loss of electroactive elements in the compound. Differential scanning calorimetric studies showed the exothermic peaks of the charged electrode Li[Ni(1/3−z)Co(1/3−z)Mn(1/3−z)Mgz]O2 (z = 0.04) were significantly smaller than that of Li[Ni1/3Co1/3Mn1/3]O2, which means that thermal stability was greatly improved by Mg substitution even at highly delithiated state.  相似文献   

19.
Li2Fe1−xMnxSi04/C cathode materials were synthesized by mechanical activation-solid-state reaction. The effects of Mn-doping content, roasting temperature, soaking time and Li/Si molar ratio on the physical properties and electrochemical performance of the Li2Fe1−xMnxSi04/C composites were investigated. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), charge-discharge tests and AC impedance measurements. SEM images suggest that the morphology of the Li2Fe1−xMnxSi04/C composite is sensitive to the reaction temperature. Samples synthesized at different temperatures have different extent of agglomeration. Being charged-discharged at C/32 between 1.5 and 4.8 V, the Li2Fe0.9Mn0.1Si04/C synthesized at the optimum conditions shows good electrochemical performances with an initial discharge capacity of 158.1 mAh g−1 and a capacity retention ratio of 94.3% after 30 cycles. AC impendence investigation shows Li2Fe0.9Mn0.1SiO4/C have much lower resistance of electrode/electrolyte interface than Li2FeSiO4/C.  相似文献   

20.
Powders of spinel Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) were successfully synthesized by solid-state method. The structure and properties of Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) were examined by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electronic microscope (SEM), galvanostatic charge–discharge test and cyclic voltammetry (CV). XRD shows that the V5+ can partially replace Ti4+ and Li+ in the spinel and the doping V5+ ion does almost not affect the lattice parameter of Li4Ti5O12. Raman spectra indicate that the Raman bands corresponding to the Li–O and Ti–O vibrations have a blue shift due to the doping vanadium ions, respectively. SEM exhibits that Li4Ti5−xVxO12 (0.05 ≤ x ≤ 0.25) samples have a relative uniform morphology with narrow size distribution. Charge–discharge test reveals that Li4Ti4.95V0.05O12 has the highest initial discharge capacity and cycling performance among all samples cycled between 1.0 and 2.0 V; Li4Ti4.9V0.1O12 has the highest initial discharge capacity and cycling performance among all samples cycled between 0.0 and 2.0 V or between 0.5 and 2.0 V. This excellent cycling capability is mainly due to the doping vanadium. CV reveals that electrolyte starts to decompose irreversibly below 1.0 V, and SEI film of Li4Ti5O12 was formed at 0.7 V in the first discharge process; the Li4Ti4.9V0.1O12 sample has a good reversibility and its structure is very advantageous for the transportation of lithium-ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号