首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal fluoride added carbon anodes treated by pre-electrolysis were investigated for electrolytic production of nitrogen trifluoride (NF3) in molten NH4F·KF·4HF at 100 °C. The conditions for pre-electrolysis were first optimized using a graphite sheet anode as a model anode. The formation of fluorine-graphite intercalation compounds (fluorine-GICs) with semi-covalent C–F bonds, (CxF)n, on the MgF2 and CaF2 added carbon anode surface was accelerated by pre-electrolysis at potentials less than 4.0 V. Critical current densities (CCD) on the MgF2 added carbon anodes pre-electrolyzed under various conditions were determined, and the highest CCD was 290 mA cm−2 obtained for that pre-electrolyzed at 3.5 V for 500 C cm−2. This anode was successfully used in the electrolysis at 100 mA cm−2 for 290 h and the maximum NF3 current efficiency was 55%. From these results, it was concluded that the metal fluoride added carbon anode treated by pre-electrolysis has a high potential for electrolytic production of NF3 at higher current density.  相似文献   

2.
This study was carried out to explain reasons of the enhanced hydrogen entry into iron at low polarisations. Hydrogen permeation rate (HPR) through a 35-μm thick iron membrane was studied with the electrochemical technique in 0.1 M NaOH at 25 °C. A rotating split-ring disk electrode was used to detect soluble Fe(II) species. Enhanced hydrogen entry (HPR peaks) was observed at low cathodic and low anodic polarisations during voltammetric cycling, and also during galvanostatic anodic polarisation applied after cathodic charging. HPR peaks occurred at potentials from about −1.2 to −0.9 V (NHE) which were more cathodic than the potentials of thermodynamic stability of Fe(OH)2 or Fe3O4, and of the formation of soluble Fe(II) species. It has been suggested that the enhanced hydrogen entry is associated with the presence of FeOHad. In this species oxygen is bound with hydrogen (oxo-hydride), hence it can be supposed that the mechanism of its promoting effect can be similar to that of hydrides of other elements of the VIb group.  相似文献   

3.
Boron-doped diamond (BDD) electrodes are promising anode materials in electrochemical treatment of wastewaters containing bio-refractory organic compounds due to their strong oxidation capability and remarkable corrosion stability. In order to further improve the performance of BDD anode system, electrochemical degradation of p-nitrophenol were initially investigated at the BDD anode in the presence of zero-valent iron (ZVI). The results showed that under acidic condition, the performance of BDD anode system containing zero-valent iron (BDD-ZVI system) could be improved with the joint actions of electrochemical oxidation at the BDD anode (39.1%), Fenton's reaction (28.5%), oxidation–reduction at zero-valent iron (17.8%) and coagulation of iron hydroxides (14.6%). Moreover, it was found that under alkaline condition the performance of BDD-ZVI system was significantly enhanced, mainly due to the accelerated release of Fe(II) ions from ZVI and the enhanced oxidation of Fe(II) ions. The dissolved oxygen concentration was significantly reduced by reduction at the cathode, and consequently zero-valent iron corroded to Fe(II) ions in anaerobic highly alkaline environments. Furthermore, the oxidation of released Fe(II) ions to Fe(III) ions and high-valent iron species (e.g., FeO2+, FeO42−) was enhanced by direct electrochemical oxidation at BDD anode.  相似文献   

4.
The results of a study on the quality of copper electrodeposited from a pyrophosphate bath in the presence of iron(III) and lead(II) are presented. The electrochemical measurements and the analysis of the deposits revealed that the discharge potentials are sensitive to the concentrations of the cations which are present in the copper deposit over the range 2.26–3.12 P2O7/Cu (P/C) molar ratios (at 50°C). Under industrial operating conditions, i.e. for current densities of between 12 and 20 A dm–2, the morphology of the deposit is also profoundly modified inasmuch as these metals, which do not form alloys with copper, inhibit the growth of crystal seeds and/or the formation of new ones. Consequently at the higher concentrations of Fe(III) and Pb(II) the deposit becomes non-coherent.  相似文献   

5.
The molybdenum chalcogenides Mo6X8 (X = S, Se) offer the possibility of intercalation/de-intercalation processes by chemical or electrochemical way. Besides the different applications of so-called Chevrel phases, we have proposed an electrochemical transfer junction for selective recovery of metallic cations in the perspective of recycling of industrial liquid mineral wastes. Thus, the knowledge of the diffusion properties of cations in the Chevrel phases is essential. Here we report on the electrochemical determination of diffusion coefficients of Co2+, Ni2+, Fe2+, Cd2+, Zn2+, Mn2+ and Cu2+ for Mo6S8 and Mo6Se8 matrices. Experiments were realized on samples with compactness of 50% and 96–98%. They point out that the lower compactness is unfavorable to the mobility of the cobalt ions. From potential step chronoamperometry and electrochemical impedance spectroscopy, the diffusion coefficients were found around 10−9 cm2 s−1, even 10−6 cm2 s−1 for copper. These results confirm the high mobility of transition metal ions in studied phases and complete the data for Co, Fe or Mn–Mo6S8 system and Mn–Mo6Se8 system. For the sulfide phase, the following sequence for is observed Ni < Co < Fe < Cd < Zn < Mn ? Cu and can be explained in regards with structural considerations and repulsion effects for copper.  相似文献   

6.
The organic–inorganic material consisted of poly(3,4-ethylenedioxythiophene) (pEDOT) and copper hexacyanoferrate (Cuhcf) was synthesized. The pEDOT film with Fe(CN)63−/4− as counter-ions potentiodynamically polarized in aqueous CuCl2 electrolyte brings about stable hybrid material (pEDOT/Cuhcf) performing single redox activity of FeII/III at a formal potential Ef = 0.61 V (vs. Ag/AgCl/0.1 M KCl) and less clearly shaped two redox coming from copper ions entrapped inside the film. XPS ex situ measurements show three different binding energies for copper (Cu 2p3/2: 932.2, 934.8 and 936.3 eV) and two for iron (Fe 2p3/2: 708.2 and 709.0 eV). Spectroelectrochemical measurements allowed to establish an order in the energy band gap (Eg) for the investigated hybrids pEDOT/Mehcf (Me = Fe, Co, Ni, Cu) as follows: Eg(pEDOT/Fehcf) = 1.40 eV < Eg(pEDOT/Cohcf) = 1.48 eV < Eg(pEDOT/Nihcf) = 1.52 eV < Eg(pEDOT/Cuhcf) = 1.6 eV. The hybrid materials were examined as electrodes for electrocatalytic reduction of H2O2. Copper centres in pEDOT/Cuhcf as well as high spin iron centres in pEDOT/Fehcf were found to be electrocatalytically active towards hydrogen peroxide reduction.  相似文献   

7.
A series of 2-[1-(2,6-dibenzhydryl-4-chlorophenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine ligands (L1–L5) as well as the ligand 2,6-bis[1-(2,6-dibenzhydryl-4-chloro-phenylimino)ethyl]pyridine (L6) were synthesized and reacted with FeCl2·4H2O to afford the iron(II) dichloride complexes [LFeCl2] (Fe1–Fe6). All new compounds were fully characterized by elemental and spectroscopic analysis, and the molecular structures of the complexes Fe1, Fe2 and Fe4 were determined by single-crystal X-ray diffraction, which revealed a pseudo-square-pyramidal geometry at iron. Upon activation with either MAO or MMAO, all iron pre-catalysts exhibited very high activity in ethylene polymerization with good thermal stability. To the best of our knowledge, the current system showed the highest activity amongst iron bis(imino)pyridine pre-catalysts reported to-date. The polymerization parameters were explored to determine the optimum conditions for catalytic activity, which were typically found to be 2500 eq. Al to Fe at 60 °C in the presence of MMAO, and 80 °C in the presence of MAO. The resultant polyethylene possessed a narrow molecular polydispersity index (PDI) consistent with the formation of single-site active species.  相似文献   

8.
A series of LiMn0.9Fe0.1−xMgxPO4/C (x = 0, 0.01, 0.02, 0.05) was synthesized by a solid state reaction, and the effect of synthesis temperature and Fe/Mg ratio on the electrochemical performance of the obtained materials was investigated by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and electrochemical measurements. The electrochemical performance of the Fe and Mg co-substituted LiMnPO4 was obviously improved with increasing synthesis temperature from 650 to 800 °C, but further increase led to an abrupt capacity loss due to the impurity formation. The Fe and Mg co-substitution could remarkably enhance the electrochemical activity of LiMnPO4 compared with the Fe substitution only, but too high level of Mg doping would worsen the rate capability. The LiMn0.9Fe0.09Mg0.01PO4/C synthesized at 800 °C demonstrated the optimum electrochemical performance with a high capacity and an excellent rate capability. Even discharged at the rate of 10 C, a capacity of 60 mAh g−1 was still observed.  相似文献   

9.
The potentiodynamic behaviour of different conducting substrates (Pt, Au and vitreous carbon) covered with iron hydroxide formed by colloidal precipitation in 0.01 M NaOH is investigated in the potential range associated with the electrochemical stability of water at 25° C. The electrochemical characteristics are mainly related to the Fe(OH)2/FeOOH redox couple formed from both thin and thick iron hydroxide layers. The results can be interpreted through the complex reaction pattern already discussed for the electrochemical behaviour of Fe in alkaline solutions.  相似文献   

10.
The electrochemical behavior of FeCp2+/FeCp2 (Cp, cyclopentadienyl), FeCl4/FeCl42−, FeBr4/FeBr42− and Fe(CN)63−/Fe(CN)64− couples was studied in the hydrophobic room-temperature ionic liquids based on bis(trifluoromethylsulfonyl)imide (TFSI) with 1-n-butyl-1-methylpyrrolidinium (BMP+) and other quaternary ammonium cations. The cyclic voltammetric data indicated that these complexes were stable in BMPTFSI and that the redox reactions between trivalent and divalent iron species of these complexes are electrochemically reversible. The diffusion coefficients of these complexes were found to be affected mainly by the size of the species. On the other hand, the redox potential of Fe(CN)63−/Fe(CN)64− couple depended on organic cations reflecting the difference in the acceptor properties of the organic cations.  相似文献   

11.
We have investigated the growth of carbon nanotube (CNT) films on copper substrates by the catalytic chemical vapour deposition route. Ferrocene was used as the catalyst precursor and toluene was the carbon feedstock. The copper substrates were coated with nitride and oxide amorphous ceramic barrier coatings in order to prevent diffusion of the iron catalyst during growth. It was found that virtually no CNT grew on pure copper, but long and densely packed mats of CNTs could be grown on TiN-coated copper. Copper substrates coated with SiNx and In2O3:Sn (ITO) also showed better results than pure copper, although the CNT density was much lower than that obtained from TiN/Cu. Auger electron spectroscopy (AES) showed that Fe diffusion occurred into SiNx/Cu and ITO/Cu substrates, which partially inhibited its catalyst activity. In contrast, AES did not detect the presence of diffused Fe into the TiN coating. The estimation of the diffusion coefficient by AES depth profiles for Fe in SiNx, was 3 · 10−3 nm2 s−1. This value establishes an upper limit for Fe diffusion on substrates for proper nanotube nucleation and growth. Secondary ion mass spectrometry provided complementary information on the composition profiles with depth.  相似文献   

12.
In this work, a facile electrochemical route i.e., anodic dissolution of bulk Cu at 2.0 V or more (vs. SCE) in a NaOH solution containing NH2OH·HCl, was introduced for the synthesis of clean Cu2O microcrystals (Cu2O MCs) with morphologies of octahedron, half circular plate, etc. The bulk Cu electrode can be facilely dispersed into Cu(OH)42− in alkaline solutions with the help of intense O2 releasing. In the presence of reductive NH2OH·HCl, Cu(II) was quickly reduced to Cu(I). Due to the concentration gradient of Cu(I) and OH resulting from the electrochemical reaction and the selective adsorption of OH on different crystal facets, half circular plate Cu2O MCs were for the first time, synthesized. By changing the NaOH concentration or applied potential, octahedron and rectangular plate Cu2O MCs could also be obtained. Scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) techniques, etc. were used to characterize the oxides. The Cu2O MCs were phase-pure cubic Cu2O. This electrochemical route is simple, basically green and can be used to synthesize Cu2O MCs with different morphologies.  相似文献   

13.
An electrochemical DNA biosensor (EDB) was prepared using an oligonucleotide of 21 bases with sequence NH2-5′-GAGGAGTTGGGGGAGCACATT-3′ (probe DNA) immobilized on a novel multinuclear nickel(II) salicylaldimine metallodendrimer on glassy carbon electrode (GCE). The metallodendrimer was synthesized from amino functionalized polypropylene imine dendrimer, DAB-(NH2)8. The EDB was prepared by depositing probe DNA on a dendrimer-modified GCE surface and left to immobilize for 1 h. Voltammetric and electrochemical impedance spectroscopic (EIS) studies were carried out to characterize the novel metallodendrimer, the EDB and its hybridization response in PBS using [Fe(CN)6]3−/4− as a redox probe at pH 7.2. The metallodendrimer was electroactive in PBS with two reversible redox couples at E°′ = +200 mV and E°′ = +434 mV; catalytic by reducing the Epa of [Fe(CN)6]3−/4− by 22 mV; conducting and has diffusion coefficient of 8.597 × 10−8 cm2 s−1. From the EIS circuit fitting results, the EDB responded to 5 nM target DNA by exhibiting a decrease in charge transfer resistance (Rct) in PBS and increase in Rct in [Fe(CN)6]3−/4− redox probe; while in voltammetry, increase in peak anodic current was observed in PBS after hybridization, thus giving the EDB a dual probe advantage.  相似文献   

14.
Redox processes taking place at precipitated hydrous iron hydroxide layers chemically formed on platinum substrates in sodium hydroxide solutions are investigated at 25°C. The electrochemical behaviour of these layers depends considerably on the electroreduction level reached in chargedischarge cycles. The accumulation of Fe3O4 during oxidation-reduction cycles can produce an increasing irreversibility of the Fe(II)/Fe(III) redox couple. Data are compared to results obtained with iron hydroxide layers formed by electrochemical and chemical methods on massive iron electrodes. Results are discussed in terms of a composite structure for the iron hydroxide layers.  相似文献   

15.
Fe-based catalysts for the oxygen reduction reaction (ORR) in polymer electrolyte membrane (PEM) fuel cell conditions have been prepared by adsorbing two Fe precursors on various commercial and developmental carbon supports. The resulting materials have been pyrolyzed at 900 °C in an atmosphere rich in NH3. The Fe precursors were: iron acetate (FeAc) and iron tetramethoxy phenylporphyrin chloride (ClFeTMPP). The nominal Fe content was 2000 ppm (0.2 wt.%). The carbon supports were HS300, Printex XE-2, Norit SX-Ultra, Ketjenblack, EC-600JD, Acetylene Black, Vulcan XC-72R, Black Pearls 2000, and two developmental carbon black powders, RC1 and RC2 from Sid Richardson Carbon Corporation. The catalyst activity for ORR has been analyzed in fuel cell tests at 80 °C as well as by cyclic voltammetry in O2 saturated H2SO4 at pH 1 and 25 °C, while their selectivity was determined by rotating ring-disk electrode in the same electrolyte. A large effect of the carbon support was found on the activity and on the selectivity of the catalysts made with both Fe precursors. The most important parameter in both cases is the nitrogen content of the catalyst surface. High nitrogen content improves both activity towards ORR and selectivity towards the reduction of oxygen to water (4e reaction). A possible interpretation of the activity and selectivity results is to explain them in terms of two Fe-based catalytic sites: FeN2/C and FeN4/C. Increasing the relative amount of FeN2/C improves both activity and selectivity of the catalysts towards the 4e reaction, while most of the peroxide formation may be attributed to FeN4/C. When FeAc is used as Fe precursor, iron oxide and/or hydroxide are also formed. The latter materials have low catalytic activity for ORR and reduce O2 mainly to H2O2.  相似文献   

16.
The electrooxidation/electroreduction processes at precipitated iron hydroxide layers on platinum electrodes have been studied in carbonate-bicarbonate buffers at 25°C by using electrochemical methods. The initial characteristics and properties of the hydrous iron hydroxide were changed by varying the precipitation conditions of the chemically formed active materials. Different potentialtime perturbation programs were employed to analyse the contribution of redox couples within the composite iron hydroxide layers on platinum electrodes and the corresponding electrochemical responses were compared with results obtained for massive iron electrodes in the same solutions. The complex electroreduction and electrooxidation processes are discussed on the basis of a reaction model which takes into account the incorporation of FeCO3 in the hydrous iron hydroxide layer and its oxidation to FeOOH species, which in turn can participate in electroreduction reactions yielding Fe3O4, Fe(OH)2, and soluble Fe(II) species.  相似文献   

17.
This paper reports on the composition and flow rate of outlet gas and current density during the reforming of CH4 with CO2 using three different electrochemical cells: cell A, with Ni−GDC (Gd-doped ceria: Ce0.8Gd0.2O1.9) cathode/porous GDC electrolyte/Cu−GDC anode, cell B, with Cu−GDC cathode/ porous GDC electrolyte/Cu−GDC anode and cell C, with Ru−GDC cathode/ porous GDC electrolyte/ Cu−GDC anode. In the cathode, CO2 reacts with supplied electrons to form CO fuel and O2− ions (CO2+2e→CO+O2−). Too low affinity of Cu cathode to CO2 in cell B reduced the reactivity of the CO2 with electrons. The CO fuel, O2− ions and CH4 gas were transported to the anode through the porous GDC mixed conductor of O2− ions and electrons. In the anode, CH4 reacts with O2− ions to produce CO and H2 fuels (CH4+O2−→2 H2+CO+2e). The reforming efficiency at 700−800 °C was lowest in cell B and highest in cell A. The Cu anode in cells A and C worked well to oxidize CH4 with O2− ions (2Cu+O2−→Cu2O+2e, Cu2O+CH4→2Cu+CO+2H2). However, a blockage of the outlet gas occurred in all the cells at 700−800 °C. The gas flow is inhibited due to a reduction in pore size in the cermet cathode, as well as sintering and grain growth of Cu metal in the anode during the reforming.  相似文献   

18.
The N2O decomposition over an [Fe]-ZSM-5 and an Fe-HZSM-5 zeolite was studied. We found that framework incorporated iron species were much more active than Fe(III) introduced as framework charge countercations by ion exchange (TOF at 0.1 vol% N2O:1.47 × 10–4 at 280°C for [Fe]-ZSM-5 vs. 2.58 × 10–4 at 468°C for Fe-HZSM-5). The higher activity of [Fe]-ZSM-5 was attributed to the uniqueness of framework iron species. Both [Fe]-ZSM-5 and Fe-HZSM-5 zeolites showed enhanced activity in the presence of excess oxygen. This is in sharp contrast to ruthenium exchanged zeolites which showed strong oxygen inhibiting effect on the rate of N2O decomposition.  相似文献   

19.
Spinel CuFe2O4 has been studied as a precursor for copper catalyst. The spinel CuFe2O4 was effectively formed on the SiO2 by calcination in air at 800 °C with the atomic ratio of Fe/Cu = 2. The spinel CuFe2O4 on the SiO2 was reduced to fine dispersion of Cu and Fe3O4 particles by the H2 reduction at 240 °C. After H2 reduction at 600 °C, sintering of Cu particles over the CuFe2O4/SiO2 (Fe/Cu = 2) was inhibited significantly, while fatal sintering of Cu particles over the Cu/SiO2 (Fe/Cu = 0) occurred. The CuFe2O4/SiO2 catalyst exhibited much higher activity and thermal stability for steam reforming of methanol (SRM), compared with the Cu/SiO2 catalyst. The spinel CuFe2O4 on the SiO2 can be regenerated after an intentional sintering treatment by calcination in air at 800 °C where the activity is also restored completely. Based on these findings, we propose that spinel CuFe2O4 is an effective precursor for a high performance copper catalyst in which the immiscible interaction between Cu and Fe (or Fe oxide) plays an important role in the stabilization of Cu particles.  相似文献   

20.
Corrosion films were prepared by applying cyclic potential pulses to the 1018 carbon steel-sour medium interface (1 M (NH4)2S, 500 ppm CN) for 1 min. Electrochemical behavior and surface morphology of these films were determined using electrochemical impedance spectroscopy (EIS), scanning electron microscopy, and scanning photoelectrochemical microscopy (SPECM). EIS diagrams and SPECM images show the passive properties and homogeneity of the films. Furthermore, X-ray photoelectron spectroscopy (XPS) was used to characterize their chemical nature and structure. XPS results show that different oxide and sulfur structures were developed during the electrochemical oxidation of carbon steel in concentrated sour media. The analysis of O 1s data indicated that, during film growth, H2O and/or hydroxyl groups are incorporated into the film structure. The XPS spectra of Fe 2p show iron bonds with S as iron sulfide (FeS2 and FeS) and the corresponding peak of O 1s shows those bonds with oxygen as Fe2O3 and/or FeO. XPS depth profile analyses for the film showed that the ratio of FeS and FeO increases from film surface to film-carbon steel interface. This corroborates the diffusion of iron ions through the film during its electrochemical growth. The chemical shift through the film for the peak associated with Fe 2p signal proves that transport mechanism of iron ions through the film is carried out by chemical diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号