首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Toluene and other neurotoxicants can cause both increases and decreases in the concentration of GFAP in the brain. While increased GFAP concentration is widely regarded as evidence for reactive gliosis, toxicant-induced decreases in GFAP have received less attention. In order to identify conditions under which inhalation exposure to toluene results in decreased GFAP concentration, rats were subjected to repeated inhalation of toluene for up to 7 days. Adult male F344 rats received inhalation exposure to air or to 1000 ppm toluene, 6 hr/day, for 3 or 7 days. This toluene exposure replicated the previously-observed decreases in GFAP in the thalamus. Serum Corticosterone was significantly elevated in the same rats that exhibited decreases in brain GFAP concentration. These results show that decreases in brain GFAP might be a consequence of disruption of the hypothalamic-pituitary-adrenal axis and/or hormonal homeostasis. Changes in GFAP and in Cort were not accompanied by a change in body weight. More research is needed to firmly establish cause and effect between increased serum glucocorticoid levels and GFAP decreases following toluene inhalation and to determine whether these decreases indicate toxicity or adaptive changes.  相似文献   

2.
The mustached bat, Pteronotus p. parnellii, has a finely tuned cochlea that rings at its resonant frequency in response to an acoustic tone pip. The decay time (DT) and frequency of these damped oscillations can be measured from the cochlear microphonic potential (CM) to study changes in cochlear mechanics. In this report, we describe phasic changes that occur in synchrony with communication sound vocalizations of the bat. Three animals with chronically implanted electrodes were studied. During the experiments, 1-2 ms tone pips were emitted from a speaker every 200 ms. This triggered a computer analysis of the resulting CM to determine the DT and cochlear resonance frequency (CRF) of the ringing. The time relative to vocalizations was determined by monitoring the output of a microphone placed near a bat's mouth. Similar results were obtained from all three bats tested. In a representative case, the average DT was 2.33 +/- 0.25 ms while the bat was quiet, but it decreased by 46% to 1.26 +/- 0.75 during vocalizations, which indicates a greater damping of the cochlear partition. Sometimes, DT started decreasing immediately before the bat vocalized. After the end of a vocalization, the return to baseline values varied from rapid (milliseconds) to gradual (1-2 seconds). The CRF also changed from baseline values during vocalization, although the amount and direction of change were not predictable. When gentamicin was administered to block the action of medial olivocochlear (MOC) efferents, DT reduction was still evident during vocalization but less pronounced. We conclude that phasic changes in damping occur in synchrony with vocalization, and that the MOC system plays a role in causing suppression. Since suppression can begin prior to vocalization, this may be a synkinetic effect, mediated by neural outflow to the ear in synchrony with neural outflow to the middle ear muscles and the muscles used for vocalization.  相似文献   

3.
We examined the effect of expression of glial fibrillary acidic protein (GFAP) on the tumor growth of astrocytoma in vivo. When rat astrocytoma C6 cells were injected subcutaneously in athymic mice, the cells produced tumors that grew rapidly. The tumor growth of C6 cells transfected with GFAP cDNA was significantly reduced compared to that of control NeoC6 cells transfected only with the neomycin resistant gene. After implantation of C6 cells transfected with mutated GFAP cDNA at the phosphorylation sites, the tumor growth was suppressed similar to that of the wild GFAP transfectants. To determine whether the cell growth suppression by GFAP is specific for astroglial cells, we assessed the effect of GFAP on the cell growth of an L cell of fibroblast origin in vitro. By GFAP cDNA transfection, L cells showed morphological changes, but the cell growth was not reduced. These results suggest that GFAP is a critical regulator of the tumor growth of astrocytoma.  相似文献   

4.
In the adult CNS, axons fail to regenerate after injury. Among the cell interactions that lead to this failure are those developed with astrocytes. In an effort to elucidate the mechanisms underlying these negative interactions, we have used astrocytes treated with antisense glial fibrillary acidic protein (GFAP) mRNA to inhibit the formation of gliofilaments, indispensable for the astroglial morphological response to injury, and have studied their permissivity for neuritic outgrowth. In a neuron-astrocyte coculture, a mechanical lesion led to hypertrophy of astrocytes neighboring the lesion. Neuronal cell bodies and neurites were absent both from the area of lesion and from its surroundings. Reactive astrocytes appeared, therefore, to be a nonpermissive substrate. Transfection that used antisense GFAP mRNA blocked astroglial morphological changes and was characterized by both a persistence of neuronal cell bodies in the vicinity of the lesion site and a growth of neurites into the same region. These morphological differences were associated with a 46% decrease in the GFAP translation capacity and a 50% increase in the concentration of GAP-43 in the treated cultures. Neurons were associated mainly with an extracellular laminin network, which was predominant at the lesion site in treated cocultures. In contrast, those astrocytes highly laminin-immunoreactive appeared to be a nonpermissive substrate for neurons. These results show that inhibition in GFAP synthesis, leading to a reduction of astroglial hypertrophy, relieves the blockade of neuritic outgrowth that normally is observed after a lesion. The mechanisms may involve changes in the secretion of extracellular matrix molecules by astrocytes.  相似文献   

5.
Affinity chromatography using different lytic transglycosylases as a specific ligand revealed an interaction of both murein hydrolases and murein synthases. This interaction is taken as evidence for the assemblage into a multienzyme complex that could function as a murein replicase precisely copying the given three-dimensional structure of the murein sacculus. The sacculus of the mother cell would function as a template, which is identically replicated by copying the lengths of the existing glycan strands and the pattern of crosslinkages. A hypothetical enzyme complex specifically involved in cell division and a complex specifically involved in cell elongation are presented. It is postulated that PBPs 1a and/or 1b are present in both complexes, whereas the presence of PBP2 or PBP3 defines the specificity of the murein-synthesizing machinery as being involved in either cell elongation or septation. Moreover, the proposed "holoenzyme" suprastructure could explain why the specific inhibition of PBPs 1a/1b results in bacteriolysis and why inhibition of PBP2 and PBP3 causes the well-known morphological alterations, spherical growth, and filamentation, respectively.  相似文献   

6.
7.
8.
The present review describes recent research on the regulation by glutamate and Ca2+ of the phosphorylation state of the intermediate filament protein of the astrocytic cytoskeleton, glial fibrillary acidic protein (GFAP), in immature hippocampal slices. The results of this research are discussed against a background of modern knowledge of the functional importance of astrocytes in the brain and of the structure and dynamic properties of intermediate filament proteins. Astrocytes are now recognized as partners with neurons in many aspects of brain function with important roles in neural plasticity. Site-specific phosphorylation of intermediate filament proteins, including GFAP, has been shown to regulate the dynamic equilibrium between the polymerized and depolymerized state of the filaments and to play a fundamental role in mitosis. Glutamate was found to increase the phosphorylation state of GFAP in hippocampal slices from rats in the post-natal age range of 12-16 days in a reaction that was dependent on external Ca2+. The lack of external Ca2+ in the absence of glutamate also increased GFAP phosphorylation to the same extent. These effects of glutamate and Ca2+ were absent in adult hippocampal slices, where the phosphorylation of GFAP was completely Ca(2+)-dependent. Studies using specific agonists of glutamate receptors showed that the glutamate response was mediated by a G protein-linked group II metabotropic glutamate receptor (mGluR). Since group II mGluRs do not act by liberating Ca2+ from internal stores, it is proposed that activation of the receptor by glutamate inhibits Ca2+ entry into the astrocytes and consequently down-regulates a Ca(2+)-dependent dephosphorylation cascade regulating the phosphorylation state of GFAP. The functional significance of these results may be related to the narrow developmental window when the glutamate response is present. In the rat brain this window corresponds to the period of massive synaptogenesis during which astrocytes are known to proliferate. Possibly, glutamate liberated from developing synapses during this period may signal an increase in the phosphorylation state of GFAP and a consequent increase in the number of mitotic astrocytes.  相似文献   

9.
The present study describes the distribution of glial fibrillary acidic protein (GFAP) and vimentin-immunopositive structures in the brain of the domestic chicken (Gallus domesticus) from hatching to maturity. The telencephalon is penetrated by a vimentin-immunopositive radial fibre system, representing a modified form of radial glia, in day-old chicks. Numerous fibres of this system persist until adulthood, mainly in the lobus parolfactorius, lamina medullaris dorsalis and lamina frontalis superior. GFAP immunoreactivity also appears in the course of development in these fibres. The distribution of GFAP-immunopositive astrocytes in the post-hatch telencephalon is like that found in adult chicken, except for the ectostriatum, in which an adult-like GFAP-immunostaining only develops during week three. This delay may be associated with a relatively slow maturation of this visual centre. In the diencephalon and in the mesencephalic tegmentum of day-old chicks GFAP-immunopositive astrocytes are confined to the border zone of several nuclei. In these areas as well as in the pons most GFAP positive astrocytes only appear gradually during the first two post-hatch weeks, although radial fibres occur only sparsely at hatch. Summarizing these results, a gradual replacement of radial fibres by astrocytes, typical of mammals, cannot be found in chicken. In the nucleus laminaris we observed a characteristic palisade of non-ependymal glia, reactive to GFAP but not to vimentin, which almost completely disappears by adulthood. We suggest that this glial system is instrumental in the development of the dendritic organisation of this nucleus. The optic tectum displays a dense array of GFAP-immunopositive radial glia at hatching, similar in this to the situation found in reptiles. However, in the tectum of reptiles this radial glia persists for the lifetime, whereas in the chick it disappears from the superficial tectal layers. This phenomenon may reflect the fact that there is no replacement of tectal cells or regeneration of retinotectal pathways in the chicken. In the early stage, the large cerebral tracts were found to contain dense accumulations of GFAP-positive cells, with peculiarly long outgrowths accompanying nerve fibres. No vimentin-immunopositivity was found in these glial elements; however vimentin was present in the glia situated at the optic chiasm, the anterior commissure and at other decussations. These structures, as well as the raphe, displayed the most intense vimentin-immunopositivity in the post-hatch chicken. This characteristic glial population may represent glial elements that have been reported to regulate fibre-crossing at the midline.  相似文献   

10.
11.
By utilizing non-destructive synchrotron radiation-excited X-ray fluorescence (SR-XRF), we observed the distribution of lead (Pb) in both ontogenic and regenerating scales of lead-administrated carp, Cyprinus carpio. The fish in the Pb-administered group were fed pellets containing 1 mg/g of Pb at a rate of 1.5% body weight per day for 30 days. In the ontogenic scales, Pb was highly accumulated near the basal edge of the scale and the accumulated amount decreased toward the focus of the scale. On the other hand, in the regenerating scales, high accumulation was observed near the basal edge and the accumulated amount remained high toward the focus. The present results of Pb accumulation correspond well with the region which is calcifying in the ontogenic and regenerating scales, and indicate that the distributions of Pb show when and how long Pb was administered.  相似文献   

12.
A rare intradural lesion of the lumbar spine producing leg pain and minimal neurological deficits is described in a 48-year-old man. Previous reports of similar lesions have been described under the designation "fibro-osseous lesions" and "calcifying pseudoneoplasms." This is the first report of an unusual fibro-osseous lesion with an intradural spinal location as well as the first to show immunohistochemical positivity for glial fibrillary acidic protein (GFAP) within cellular components of this process and crystal formation suggestive of calcium pyrophosphate. This case also shows radiographic progression suggesting the possibility that this entity may be a form of low grade neoplasm.  相似文献   

13.
14.
15.
The performance of gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) and superparamagnetic iron oxide (SPIO) particles in detecting liver cancer was compared using alternative free-response receiver operating characteristic (AFROC) analysis, which allowed observers to indicate both the confidence level and the locations of all perceived abnormalities. Axial T1-weighted MR images (1.5 T) pre/post Gd-EOB-DTPA (25 mumol/kg) injection were obtained for 12 rats with chemically induced liver tumors (64 tumors). T2-weighted images (T2WI) were obtained pre/post SPIO (10 mumol/kg) injection for the same animal. Liver signal-to-noise ratio (SNR), tumor-liver contrast-to-noise ratio (CNR), and histopathologic sections corresponding to MR images were obtained. In AFROC, the location and the confidence level for each tumor were indicated independently on MR images by four radiologists. By plotting true-positive fraction and probability of false-positive per image, the area under the AFROC curve (A1) was estimated and statistically analyzed between each sequence. Either drug significantly improved tumor-liver CNR (P < .001) and tumor detection (diameter < or = 6 mm; P < .05). Gd-EOB-DTPA significantly (P < .05) improved the A1 in T1WI. There was no A1 difference between T2WI + SPIO and T1WI + Gd-EOB-DTPA. Gd-EOB-DTPA-enhanced T1WI showed the same performance as SPIO-enhanced T2WI in detecting liver tumors.  相似文献   

16.
This study investigated the morphological changes and glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the anteroventral cochlear nucleus (AVCN) of acoustically-deprived gerbils during postnatal development. The mongolian gerbil, Meriones unguiculatus, had been acoustically deprived on the right side or left side by a surgical ligation of the external auditory canal at postnatal day 12-14. No discernible microcysts were located in the ipsilateral AVCN at one, three, six and nine months after monaural ligation. Also, no discernible microcysts were located in the contralateral AVCN at one and three months after monaural ligation. Numerous microcysts were located in the contralateral AVCN at six months after monaural ligation and were slightly reduced in number at nine months after monaural ligation. Some of the microcysts closely apposed to and connected with the blood vessels through a leakage route or channel. A foamy region was found in the superficial granule cell cap of the AVCN. The foamy region became evident in the ipsilateral AVCN at three months after monaural ligation. However, the foamy region became evident in the contralateral AVCN at three and nine months after monaural ligation. Vacuoles were mainly found in the neuronal cells at the junction of the superficial and deep layers in the AVCN. These vacuoles were found in the contralateral AVCN at one, three, six, and nine months after monaural ligation. However, vacuoles were found in the ipsilateral AVCN only at three months after monaural ligation. Morphological changes of the myelin sheath were found to be more severe in the contralateral AVCN than in the ipsilateral. GFAP-IR was located in the superficial layer of the contralateral AVCN at three and nine months after monaural ligation. However, GFAP-IR was found in the superficial and deep layers of the ipsilateral AVCN at three and nine months after monaural ligation. GFAP-IR was also found in the superficial layers of the ipsilateral AVCN at six months after monoaural ligation. Microcysts are presumably derived from the detachment of the myelin sheath from the retracted axons, protrusion of the myelin sheath, and disruption of the myelin sheath. The major conclusions were that (1) microcysts were greatly reduced following acoustical ligation during postnatal development, and (2) blood vessels and GFAP-immunoreactive astrocytes may be involved in the depletion of microcysts for maintaining the homeostasis of the microenvironment in the cochlear nuclei.  相似文献   

17.
The present study investigates the reactive gliosis following a simple stab wound lesion to a brain area in which a characteristic astroglial architecture exists, i.e., the Bergmann-glia in the molecular layer of cerebellum. While in mammalian brain the Bergmann-glia contains glial fibrillary acidic protein (GFAP), in the avian Bergmann-glia, the cytoskeletal protein is vimentin, which is characteristic for immature astroglia in mammals. The operations were performed on chickens and rats under deep anaesthesia, using a sterile disposable needle. After a 1-week survival period, the animals were overdosed with ether and perfused transcardially with 4% buffered paraformaldehyde. Free-floating sections cut with a vibration microtome were processed for immunohistochemistry against GFAP and vimentin. GFAP immunopositivity of Bergmann-glia appeared in chicken and increased in rat in the lesioned area but the lesion was not surrounded by typical astrocytes and no demarcation was formed in the molecular layer, in contrast to the usual appearance of reactive gliosis, which was observed in the granular layer and in the white matter in both species. Vimentin immunopositivity of the Bergmann-glia also increased around the lesion in both species. The results suggest that a highly developed glial architecture fails to re-arrange into a demarcating scar, which offers an interesting model system to study the importance of glial demarcation. The observations also support that the resident glia is the main component of the glial reaction, and prove the capability of avian Bergmann-glia to express GFAP.  相似文献   

18.
OBJECTIVE: Construction of constitutively active mutants of the GnRH receptor, a member of the G-protein coupled receptor superfamily, would facilitate investigation of the mechanism of receptor activation. DESIGN: Point mutations were introduced in the human GnRH receptor in positions corresponding to those which caused constitutive activity in other G-protein coupled receptors. The effects of these mutations on ligand binding, receptor intracellular signaling and receptor expression were determined. METHODS: Wild type and mutated receptor cDNAs were expressed in COS-1 cells. Basal and agonist-stimulated inositol phosphate production and ligand binding were determined. In addition, receptor mRNA levels, cell surface receptor stability and rate of internalization were measured. RESULTS AND CONCLUSIONS: Although none of the mutant receptors exhibited constitutive activity, mutation of Phe-2 72 in transmembrane helix VI to Leu increased cell surface receptor numbers, with unchanged affinities for radiolabeled agonist, superagonist and antagonist peptides compared with wild type receptor. The cell surface receptor stability and rate of internalization were similar for wild type and F272L GnRH receptors. Thus a single amino acid mutation in transmembrane helix VI causes an increase in cell surface receptor numbers, which appears to result from an increased rate of receptor protein translation, processing or insertion into membranes.  相似文献   

19.
Kainate-induced seizure activity causes persistent changes in the hippocampus that include synaptic reorganization and functional changes in the mossy fibers. Using in situ hybridization histochemistry, the expression of PKC alpha, PKC beta, PKC gamma, PKC delta and PKC epsilon mRNAs was investigated in the hippocampus of adult rats following seizures induced by a s.c. injection of kainic acid. In CA1 and CA3, we found a significant decrease in PKC gamma mRNA 1 day after kainic acid which persisted for a 2nd day in CA1. None of the other PKC isoform mRNAs were altered in CA1 or CA3. In granule cells, a significant up-regulation specific to PKC epsilon mRNA was observed. One week after kainic acid administration, a marked increase in PKC epsilon immunoreactivity was found that persisted 2 months after kainic acid administration. PKC epsilon immunoreactivity was found associated with mossy fibers projecting to the hilus of the dentate gyrus and to the stratum lucidum of the CA3 field and presumably with the newly sprouted mossy fibers projecting to the supragranular layer. These data provide the first evidence for a long-lasting increase of the PKC epsilon in the axons of granule cells caused by kainate-induced seizures and suggest that PKC epsilon may be involved in the functional and/or structural modifications of granule cells that occur after limbic seizures.  相似文献   

20.
Astrogliosis is a predictable response of astrocytes to various types of injury caused by physical, chemical, and pathological trauma. It is characterized by hyperplasia, hypertrophy, and an increase in immunodetectable glial fibrillary acidic protein (GFAP). As GFAP accumulation is one of the prominent features of astrogliosis, inhibition or delay in GFAP synthesis in damaged and reactive astrocytes might affect astrogliosis and delay scar formation. The aim of this study is to investigate the possibility of utilizing antisense oligonucleotides in controlling the response of astrocytes after mechanically induced injury. We scratched primary astrocyte cultures prepared from newborn rat cerebral cortex with a plastic pipette tip as an injury model and studied the astrogliotic responses in culture. Injured astrocytes became hyperplastic, hypertrophic, and had an increased GFAP content. These observations demonstrate that injured astrocytes in culture are capable of becoming reactive and exhibit gliotic behaviors in culture without neurons. The increase in GFAP content in injured astrocytes could be inhibited by incubating the scratched culture with commercially available liposome complexed with 3' or 5' antisense oligonucleotides (20 nt) in the coding region of mouse GFAP. The scratch model provides a simple system to examine in more detail the mechanisms involved in triggering glial reactivity and many of the cellular dynamics associated with scar formation. Antisense oligonucleotide treatment could inhibit the GFAP synthesis in injured astrocytes, hence it may be applicable in modifying scar formation in CNS injury in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号