首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
双酚A型双邻苯二甲腈(BAPh)与酚醛树脂(novolac)通过熔融共混形成了预聚物(BAPh/novolac),经后续热处理制备了BAPh/novolac固化物。通过DSC,FTIR,TGA及流变性能测试研究了该共混体系的固化反应特性,固化物的热稳定性和热氧化稳定性。结果表明:该共混体系可以在无外加固化剂的条件下进行固化反应,固化物的玻璃化转变温度(Tg)达241℃。其固化物在空气和N2气氛中的起始分解温度为380~449℃,且在氮气下800℃残炭率达71%,表现出良好的热稳定性和热氧稳定性。  相似文献   

2.
Novolac–phthalonitrile polymers bearing a controlled concentration of phthalonitrile groups were synthesized by condensation of novolac with 4‐nitrophthalonitrile. The cure characteristics monitored by DSC and rheometry indicated acceleration of the cure reaction by the phenolic groups. Fourier transform infrared analysis of the cured products indicated that the cure mechanism was dependent on the extent of phthalonitrile substitution. In phenol‐rich systems, evidence was obtained for the phenol‐mediated reaction of nitrile groups resulting in the formation of isoindoline groups. The phthalonitrile‐rich system underwent crosslinking through formation of triazine and phthalocyanine groups. The phenol groups in the phthalonitrile backbone were conducive to building a stronger interphase in their carbon composites, resulting in better mechanical properties. This was corroborated by morphological studies by SEM. However, these groups were detrimental to the thermal stability of the cured resins. The polymers exhibited very high flame retardancy which improved further on increasing the degree of phthalonitrilation. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
Phthalonitrile polymers are known for their high thermal stability and good mechanical properties. However, their brittle nature limits their application as structural composites in many critical areas. The present study investigates the feasibility of toughening novolac–phthalonitrile (NPN) resin using chemically modified poly(ether ether ketone) (PEEK). A telechelic PEEK bearing a phthalonitrile end group (PEEKPN) was synthesized via nucleophilic substitution of nitrophthalonitrile with the corresponding phenol–telechelic poly(ether ether ketone) (PEEKOH). Different compositions of NPN and PEEKOH–PEEKPN blends with curing agent, i.e. diaminodiphenylsulfone, were investigated for their cure behaviour and mechanical properties of their carbon fabric composites. In NPN–PEEKOH blends, crosslinking of the phthalonitrile groups was facilitated by phenol‐mediated reactions resulting in the reduction of cure temperatures by around 130 °C with substantial improvement in thermal stability. Blending the resin with the thermoplastic enhanced the mechanical properties of the composites. The apparent flexural strength and impact strength of carbon fabric‐reinforced composites were improved by more than 200 and 150%, respectively, on incorporation of 20 wt% PEEKOH in the NPN matrix. However, higher concentration of PEEKOH had a detrimental effect on the properties. Substitution of phenol end groups by phthalonitrile moieties led to integration of the PEEK moieties with the NPN matrix. However, it was not as conducive as PEEKOH for improving the matrix properties. The better performance of PEEKOH is attributed to the formation of polar heterocyclic groups like isoindoline by way of the phenol–nitrile reaction. © 2014 Society of Chemical Industry  相似文献   

4.
Self cure promoting, amine-containing novolac–phthalonitrile (APN) resins of varying compositions were synthesized and characterized. APN possessing amine functionalities reduced the cure initiation temperature from 310 °C (typical of pure phthalonitrile systems) to 180 °C. It showed excellent thermal stability up to 420 °C and high char residue of 77–79 %. Co-reaction of APN with diglicydyl ether of bisphenol A (DGEBA) led to a decrement in their thermal stability though improved their adhesive properties. Evidences were obtained for epoxy–amine, epoxy–phthalonitrile and amine–phthalonitrile reactions. The latter reactions led to formation of oxazoline, triazine and phthalocyanine groups in the network. These were rationalized by density functional theory studies on model compounds. The extents of epoxy–amine and epoxy–phthaonitrile reactions were quantified. Introduction of hydroxyl terminated poly ether ether ketone (PEEK) reduced the brittleness of the blends and improved their lap shear strength. Toughening of epoxy–amino novolac phthalonitrile networks occurred through phase separation of PEEK segments in cured matrix.  相似文献   

5.
Novel addition curable phenolic resins bearing terminal ethynyl groups anchored to benzene ring through a phenyl azo linkage were realized by the coupling reaction between novolac and 3-ethynyl phenyl diazonium salt. The diazo-coupling occurred to a maximum of 50 mol%. The apparent molecular weight, determined from gel permeation chromatography showed a downward drift with increase in degree of acetylene substitution. The resin underwent curing in a broad temperature range 140-240 °C. Analyses using a model compound indicate that the curing occurs via various addition polymerization of acetylene groups. The thermal stability and anaerobic char yield of the polymers increased proportional to the crosslinking and were considerably superior to those of a conventional resole. Isothermal pyrolysis studies implied the possibility for the decomposition occurring mainly by loss of nitrogen gas, and hydrocarbon to form mostly an amorphous char.  相似文献   

6.
以碱为催化剂,通过酚醛树脂与4-硝基邻苯二甲腈之间的亲核取代反应,制备了邻苯二甲腈醚化酚醛树脂(BPN)并采用红外光谱,GPC,流变仪,DSC及TGA对其性能进行了研究。结果表明,BPN树脂加工窗口约为65℃,最小粘度约为300 mPa.s,具有优良的加工性能。BPN固化温度为175~350℃,固化反应峰值温度为290℃,说明该树脂通过酚羟基对邻苯二甲腈基团的催化热聚合反应,实现了含氰基树脂的单组分、较低温度的加成固化。BPN树脂在温和的后固化条件下(250℃/6 h)即可获得优良的热稳定性,其5%失重温度约为420℃,氮气氛围900℃残炭率约为72%。  相似文献   

7.
水性环氧树脂/双氰胺体系的研究   总被引:3,自引:1,他引:2  
多官能团酚醛环氧树脂F-51与适量二乙醇胺反应,制得一种分子中含环氧基和亲水基团的改性F-51环氧树脂,该树脂成盐后具有良好亲水性。以双氰胺为固化剂,对体系的反应性及固化物主要性能进行研究,结果表明固化反应起始温度显著降低,固化膜的硬度达6H,并具有很强的附着力。  相似文献   

8.
通过苯甲酸改性酚醛环氧树脂得到了含羟基的酚醛环氧树脂,再经固化剂甲苯二异氰酸酯三聚体和邻苯二甲酸酐固化后,得到了耐热的环氧聚氨酯复合涂层.通过改变苯甲酸改性酚醛环氧树脂的开环率,研究了在聚氨酯体系中引入酚醛环氧树脂的量对其耐热性能的影响.以傅里叶变换红外光谱研究了苯甲酸改性酚醛环氧树脂及其固化过程,以热重分析研究了酚醛...  相似文献   

9.
The influence of oxidized multi‐walled carbon nanotubes (o‐MWCNTs) on the curing kinetics of a novolac resin was studied by means of non‐isothermal differential scanning calorimetry. Regarding the kinetics issues, the high concentration of hydroxyl groups on the o‐MWCNTs slightly modified the curing reaction of the novolac resin, shifting the differential scanning calorimetry exothermic peak to higher temperatures. The effective activation energy of the curing reaction was calculated by the isoconversional Kissinger‐Akahira‐Sunose method and increased by the presence of o‐MWCNTs with respect to neat novolac. This change was attributed to the increase of the material viscosity. In addition, thermogravimetric analysis revealed that nanocomposites samples containing 0.4 and 1.0 wt% o‐MWCNTs presented increased char yield values, indicating an improvement of flame retardancy.  相似文献   

10.
酞菁树脂是一种新型结构树脂,具有优异的高温力学性能、热氧稳定性。对由美国海军研究室研制的系列酞菁树脂做出了概述:首先综述了具有多种桥链结构的酞菁树脂的类型,包括单体的结构、合成方法、树脂的耐热能力;然后探讨了树脂的固化机理、固化剂的类型、特点;最后,介绍了树脂的应用领域,包括热熔胶、与环氧树脂组成混合物、纤维增强材料,指出我国科研工作者制备出具有独立知识产权的新型的双邻苯二甲腈单体至关重要,且应拓宽树脂在耐高温领域的应用范围。  相似文献   

11.
The curing behavior of polydimethylsiloxane‐modified allylated novolac/4,4′‐bismaleimidodiphenylmethane resin (PDMS‐modified AN/BDM) was investigated by using Fourier transform infrared spectrometry (FTIR) and differential scanning calorimetry. The results of FTIR confirmed that the curing reactions of the PDMS‐modified AN/BDM resins, including “Ene” reaction and Diels–Alder reaction between allyl groups and maleimide groups, should be similar to those of the parent allylated novolac/4,4′‐bismaleimidodiphenylmethane (AN/BDM) resin. The results of dynamic DSC showed that the total curing enthalpy of the PDMS‐modified AN/BDM resins was lower than that of the parent resin. Incorporation of polydimethylsiloxane (PDMS) into the backbone of the allylated novolac (AN) resin favored the Claisen rearrangement reaction of allyl groups. The isothermal DSC method was used to study the kinetics of the curing process. The experimental data for the parent AN/BDM resin and the PDMS‐modified AN/BDM resins exhibited an nth‐order behavior. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
In this study, the time–temperature– transformation (TTT) cure diagrams of the curing processes of several novolac resins were determined. Each diagram corresponded to a mixture of commercial phenol–formaldehyde novolac, lignin–phenol–formaldehyde novolac, and methylolated lignin–phenol–formaldehyde novolac resins with hexamethylenetetramine as a curing agent. Thermomechanical analysis and differential scanning calorimetry techniques were applied to study the resin gelation and the kinetics of the curing process to obtain the isoconversional curves. The temperature at which the material gelled and vitrified [the glass‐transition temperature at the gel point (gelTg)], the glass‐transition temperature of the uncured material (without crosslinking; Tg0), and the glass‐transition temperature with full crosslinking were also obtained. On the basis of the measured of conversion degree at gelation, the approximate glass‐transition temperature/conversion relationship, and the thermokinetic results of the curing process of the resins, TTT cure diagrams of the novolac samples were constructed. The TTT diagrams showed that the lignin–novolac and methylolated lignin–novolac resins presented lower Tg0 and gelTg values than the commercial resin. The TTT diagram is a suitable tool for understanding novolac resin behavior during the isothermal curing process. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Bisphthalonitrile (BAPh) monomer was blended with novolac resins to achieve good processing resin blends. The curing behaviors of the novolac/BAPh (novolac/BAPh) blends were studied by differential scanning calorimetry (DSC) and dynamic rheological analysis. The results indicated that the blends had large processing windows (98–118°C), and they can copolymerize without any other curing additives. The novolac/BAPh copolymers were obtained by short curing times and low curing temperatures. Thermal and thermal-oxidative stabilities of the copolymers were investigated by thermal gravimetric analysis, and the char yields up to 74 and 35% by weight at 800°C were achieved under nitrogen and air atmosphere, respectively. These postcured copolymers exhibited a 5% weight loss temperature of 502°C in air. These results revealed that the copolymers exhibited excellent thermal and thermal-oxidative stabilities. Dynamic mechanical properties of the copolymers were systematically evaluated by dynamic mechanical analysis. The copolymers exhibited higher glass transition temperatures (Tg) as the BAPh content increased. Mechanical properties of the copolymers were investigated, and these data showed that flexural strength and flexural modulus of the 50 : 50 novolac/BAPh copolymers were 91 MPa and 5.78 GPa, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
M.A. Espinosa  V. Cádiz 《Polymer》2004,45(18):6103-6109
Modified novolac resins with benzoxazine rings were prepared and cured with isobutyl bis(glycidylpropylether) phosphine oxide (IHPOGly) as crosslinking agent. Their curing behaviour using different epoxy/phenol molar ratios and with or without triphenylphosphine as catalyst was studied. Two different phenolic groups react with oxirane ring, those initially free and those generated after benzoxazine ring opening. In absence of catalyst, it is not possible to distinguish between them. However, for the catalyzed curing of the highest modification degree benzoxazine based novolac resin is possible to distinguish both reactions. The thermal, thermomechanical and flame retardant properties of the cured materials were measured. V-O materials were obtained when the resins were tested for ignition resistance with the UL-94 test.  相似文献   

15.
This study looks at the thermal behavior of mixtures of nitrile‐butadiene rubber (NBR) with a resol or a novolac resin. When heated in the 200–300°C range, NBR became hard and insoluble because of exothermic curing and cyclizing chain reactions involving the double bonds of its butadiene units and the nitrile groups of its acrylonitrile units. The NBR proved to be compatible with the novolac but not the resol. Heating increased the modulus of elasticity of the mixtures, which was due to crosslinking of the resin and the rubber. Preliminary linking of the resin resulted in phase separation in the novolac and prevented curing of the rubber when the mixture was heated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1346–1351, 2001  相似文献   

16.
通过三步反应合成了一种含咪唑的邻苯二甲腈的模型化合物(BIPN),同时合成了一种不含咪唑的邻苯二甲腈的模型化合物(Biphenyl-PN)用于对比。通过热重分析(TGA)、紫外光谱、热处理前后的红外光谱(FT-IR)、核磁共振氢谱(1H-NMR)对比研究了这两种化合物的结构和性能,并初步研究了BIPN的固化机理。结果表明:BIPN具有自催化作用,其固化过程中有酞菁环和三嗪环生成,且主要结构为三嗪环。  相似文献   

17.
High curing temperature (including post‐curing temperature) and long curing time of phthalonitrile resins make them thermally stable but difficult to process. In this paper, novel mixed curing agents (CuCl/4,4′‐diaminodiphenylsulfone (DDS) and ZnCl2/DDS) were firstly designed for solving these problems. Bisphenol‐based phthalonitrile monomer (BP‐Ph; melting point: 228–235 °C) was synthesized and used as the curing precursor. Differential scanning calorimetry results indicated that BP‐Ph cured with CuCl/DDS and ZnCl2/DDS exhibited curing temperatures close to the melting point of BP‐Ph with curing ending temperatures of 225.4 and 287.1 °C, respectively. Rheologic investigations demonstrated obvious curing reactions of BP‐Ph occurred with the mixed curing agents at 220 °C. Thermogravimetric analysis showed that BP‐Ph cured by CuCl/DDS or ZnCl2/DDS maintained 95% mass at 573 or 546 °C, respectively, at a post‐curing temperature of 350 °C for 2 h. Reasonable long‐term thermo‐oxidative stability was also demonstrated. When the post‐curing temperature decreased to 290 °C, char yield at 800 °C of BP‐Ph cured by CuCl/DDS was 77.0%, suggesting the curing procedure can be milder when using mixed curing agents. © 2017 Society of Chemical Industry  相似文献   

18.
以双酚S、甲醛和三聚氰胺为原料合成含氮线性酚醛树脂,并用其作为固化剂,结合阻燃剂甲基膦酸酐对环氧树脂进行阻燃改性。利用TGA对环氧/酚醛树脂与环氧/酚醛树脂/膦酸酐两种浇铸体系的热稳定性能进行了比较研究。结果表明甲基膦酸酐为阻燃剂,酚醛树脂固化环氧树脂能得到效果较好的阻燃材料,垂直燃烧试验结果为UL-94V-0级。  相似文献   

19.
A bisphenol A type novolac resin (Bis‐ANR) was synthesized from bisphenol A and formaldehyde; the resulting novolac was epoxidized to generate a bisphenol A type novolac epoxy resin (Bis‐ANER). The chemical structures of Bis‐ANR and Bis‐ANER were confirmed by 1H‐NMR spectroscopy and IR spectroscopy; the molecular weights and molecular weight distributions were determined by gel permeation chromatography. In addition, the curing process of Bis‐ANER with 4,4′‐diaminodiphenyl sulfone was studied in both dynamic and isothermal modes with differential scanning calorimetry. The dynamic curing kinetic analysis was evaluated with both the Kissinger and Flynn–Wall–Ozawa methods, and the curing activation energy values were obtained. The isothermal curing reaction exhibited autocatalytic behavior, and the curing kinetics were described with the Kamal kinetics model, which accounted for both the autocatalytic and diffusion‐control effects. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 858–868, 2006  相似文献   

20.
采用动态DSC方法研究了促进剂种类、促进剂用量对溴化环氧树脂A80/novolac、A80/线形双酚A酚醛(BPAN)和A80/线形双酚F酚醛(BPFN)体系固化反应的影响。结果表明:DMP-30、六次甲基四胺(HMTA)和2-甲基咪唑(2-MZ)对A80/三种线形酚醛体系的固化均有促进作用。随温度升高,凝胶时间取对数的曲线线性下降;随促进剂用量增大,凝胶时间取对数-温度曲线向低温方向平移;以2-MZ(0.1份)作为促进剂,三种线形酚醛固化A80体系的固化反应放热峰的峰顶温度均为155℃左右,其中A80/BPFN体系的固化温度范围较宽约55℃,在150℃条件下2 h可固化完全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号