首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Huang  Xiao-feng  Ma  Ya-jie  Zhang  Qiao-qiao  Wei  Lang-lang  Yang  Jian-qiao 《中国铸造》2019,16(1):53-62
The content and kind of trace elements in magnesium alloys have important effects on their ascast and semi-solid microstructures. In this research work, effects of trace Cr on as-cast and semi-solid microstructures of ZC61 magnesium alloy were investigated by metal mold casting and semi-solid isothermal heat treatment. The results show that the addition of Cr can refine the α-Mg phase without generating a new phase, noticeably change the eutectic phase, and decrease the average size of solid particles at the same isothermal heat treatment conditions. Non-dendritic microstructures of all alloys are constituted of α_1-Mg phases, α_2-Mg phases and eutectic phases after water quenching. With isothermal temperature increased or holding time prolonged, the eutectic microstructure(α-Mg+MgZn_2+CuMgZn) at the grain boundaries in as-cast alloy is melted preferentially and then turned into semi-solid non-dendritic microstructure by processes of initial coarsening, microstructure separation, spheroidizing and final coarsening. Especially when the ZC61-0.1 Cr alloy was treated at 585 ℃ for 30 min, the ideal non-dendritic microstructure can be obtained, and the corresponding solid particle size and shape factor were 37.5 μm and 1.33, respectively. The coarsening process of solid α-Mg phase at higher temperature or longer time, which is affected by both combining growth and Ostwald ripening mechanism, is refrained when Cr is added to the ZC61 alloy.  相似文献   

2.
热处理对Mg-5Zn-0.63Er合金显微组织及力学性能的影响   总被引:1,自引:0,他引:1  
通过不同的热处理工艺研究含有准晶Ⅰ相的铸态Mg-5Zn-0.63Er(质量分数,%)合金的显微组织演变.结果表明:合金在480℃固溶10 h后,除有W相颗粒析出外,准晶Ⅰ相几乎全部固溶在基体中.固溶态Mg-5Zn-0.63Er合金在175℃下时效6~10h.合金在峰时效态的抗拉强度约为261MPa、伸长率为10.5%.合金拉伸强度的提高归因于杆状MgZn2相的析出.  相似文献   

3.

Although icosahedral quasicrystal phase (denoted as I-phase) has been verified as an outstanding reinforcing phase, the mechanical properties of quasicrystal-reinforced Mg-Zn-Y alloys fabricated by traditional casting processes are still unsatisfactory due to the serious segregation of intermetallic compounds. In this study, the microstructure and mechanical properties of Mg-12Zn-2Y alloy fabricated by different casting processes, including permanent mold casting, squeeze casting and rheo-squeeze casting with ultrasonic vibration, were systematically investigated and compared. The results show that massive, large-sized I-phase and Mg7Zn3 phase gather together in the permanent mold cast sample, while the squeeze casting process leads to the transformation of I-phase into fine lamellar morphology and the amount of Mg7Zn3 decreases. As to the rheo-squeeze casting process, when the ultrasonic vibration is exerted with power from 800 W to 1,600 W, the α-Mg grains are refined and spheroidized to a large extent, and the lamellar spacing of the eutectic structure is significantly reduced, accompanied by some tiny granular I-phase scattering in the α-Mg matrix. However, when the ultrasonic power continuously increases to 2,400 W, the eutectic structure becomes coarse. The best mechanical properties of the rheo-squeeze cast alloy are obtained when the ultrasonic power is 1,600 W. The microhardness, yield strength, ultimate tensile strength and elongation are 79.9 HV, 140 MPa, 236 MPa, and 3.25%, which are 44.1%, 26.1%, 25.5%, 132.1% respectively higher than the corresponding values of the squeeze casting sample, and are 47.6%, 44.3%, 69.8%, and 253.3% respectively higher than the corresponding values of the permanent mold casting sample.

  相似文献   

4.

Effects of ageing treatment on the microstructures, mechanical properties and corrosion behavior of the Mg-4.2Zn-1.7RE-0.8Zr-xCa-ySr [x=0, 0.2 (wt.%), y=0, 0.1, 0.2, 0.4 (wt.%)] alloys were investigated. Results showed that Ca or/and Sr additions promoted the precipitation hardening behavior of Mg-4.2Zn-1.7RE-0.8Zr alloy and shortened the time to reaching peak hardness from 13 h to 12 h. The maximum hardness of 77.1±0.6 HV for the peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy was obtained. The microstructures of peak-aged alloys mainly consist of α-Mg phase, Mg51Zn20 phase and ternary T-phase. The Zn-Zr phase is formed within the α-Mg matrix, and the Mg2Ca phase is formed near T-phase due to the enrichment of Ca in front of the solid-liquid interface. Furthermore, fine short rod-shaped β′1 phase is precipitated within the α-Mg matrix in the peak-aged condition. The peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy exhibits optimal mechanical properties with an ultimate tensile strength of 208 MPa, yield strength of 150 MPa and elongation of 3.5%, which is mainly attributed to precipitation strengthening. In addition, corrosion properties of experimental alloys in the 3.5wt.% NaCl solution were studied by the electrochemical tests, weight loss, hydrogen evolution measurement and corrosion morphology observation. The results suggest that peak-aged alloys show reduced corrosion rates compared with the as-cast alloys, and minor additions of Ca and/or Sr improve the corrosion resistance of the Mg-4.2Zn-1.7RE-0.8Zr alloy. The peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy possesses the best corrosion resistance, which is mainly due to the continuous and compact barrier wall constructed by the homogeneous and continuous second phases.

  相似文献   

5.
The research explored ways of improving corrosion behaviour of AZ91D magnesium alloy through heat treatment for degradable biocompatible implant application. Corrosion resistance of heat-treated samples is studied in simulated body fluid at 37 °C using immersion and electrochemical testing. Heat treatment significantly affected microgalvanic corrosion behaviour between cathodic β-Mg17Al12 phase and anodic α-Mg matrix. In T4 microstructure, dissolution of the β-Mg17Al12 phase decreased the cathode-to-anode area ratio, leading to accelerated corrosion of α-Mg matrix. Fine β-Mg17Al12 precipitates in T6 microstructure facilitated intergranular corrosion and pitting, but the rate of corrosion was less than those of as-cast and T4 microstructures.  相似文献   

6.
Applying XRD, DTA, SEM and TEM techniques, an investigation on the solidification microstructure and solidification sequence of Mg-rich Mg-28%Zn-2%Y (mole fraction) alloy was carried out. It is found that, a-Mg dendrites, Mg7Zn3 phase and icosahedral quasicrystal phase coexist in the as-solidified alloy, where the icosahedral quasicrystal, whose structure is indentified to be a face-centered type, originates from a peritectic reaction occurring at 416 ℃. The primary phase of this peritectic reaction has the composition of Mg20Zn66Y14, which is coincident with the H phase reported by TSAI as (Zn, Mg)5Y. Furthermore, the single I-phase grain morphology was observed and its growth evolution was also discussed.  相似文献   

7.
In this article, Mg–Cu–Y alloys with two different Mg/Cu ratios(in at%) were prepared using a watercooled copper mold. Scanning electron microscopy and X-ray diffraction were applied to analyze the microstructure and phase composition. Moreover, corrosion resistance and wear resistance were studied systematically. The results show that both Mg65 Cu25 Y10 and Mg60 Cu30 Y10 alloys could form a composition of crystalline and amorphous phases. Although the microstructure of Mg65 Cu25 Y10 consists of an amorphous phase and a-Mg, Mg2 Cu, and Cu2 Y crystalline phases, the microstructure of Mg60 Cu30 Y10 alloy mainly consists of the amorphous phase and a-Mg, Mg2 Cu. With reducing Mg/Cu ratio, the alloys have better corrosion resistance and wear resistance. The mechanism has also been discussed in detail.  相似文献   

8.
Icosahedral quasicrystalline phase in an as-cast Mg-Zn-Er alloy   总被引:2,自引:1,他引:1  
The microstructure of an as-cast Mg-Zn-Er alloy was investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS). The results indicate that two different second phases, one with eutectoid-lamellar morphology and the other with granular shape, distribute in the α-Mg matrix. The coexistence of the face-centered icosahedral quasicrystalline phase (I-phase) and W-phase with the face-centered cubic structure is found in the as-cast alloy. The coexistence of I-phase and W-phasc in the Mg-Zn-Er alloy is because the W-phase is the primary phase and the I-phase forms by peritectic reaction during solidification.  相似文献   

9.
The effects of Sn addition on the microstructure of as-cast and as-extruded Mg–9Li alloys were investigated. The results show that α-Mg, β-Li, Li2MgSn, and Mg2Sn are primary phases in the microstructures of the as-cast and as-extruded Mg–9Li–xSn (x=0, 5; in mass fraction, %) alloys. Li2MgSn phase evolves from continuously net-like structure in the as-cast state to fine granular in the as-extruded state. After the extrusion, Mg–9Li–5Sn alloy has finer microstructures. Li2MgSn or Mg2Sn compound can act as the heterogeneous nucleation sites for dynamic recrystallization during the extrusion due to the crystallography matching relationship. Extrusion deformation leads to dynamic recrystallization, which results in the grain refinement and uniform distribution. The as-extruded Mg–9Li–5Sn alloy possesses the lowest grain size of 45.9 μm.  相似文献   

10.
Thermal analysis was used to investigate the microstructural evolution of Mg-7Zn-xCu-0.6Zr alloys during solidification. The effect of Cu content (0, 1, 2 and 3, mass fraction, %) on the hot tearing behavior of the Mg-7Zn-xCu-0.6Zr alloys was investigated with a constrained rod casting (CRC) apparatus, equipped with a load sensor and a data acquisition system. The thermal analysis results of Mg-7Zn-xCu-0.6Zr alloy revealed that the alloy consisted of two distinct phases: α-Mg and MgZn2. Three distinct peaks were observed in the alloys with Cu addition, which were identified as α-Mg, MgZnCu and MgZn2. In addition, the reaction temperature of α-Mg decreased and the reaction temperatures of MgZn2 and MgZnCu increased as the Cu content increased. The experimental results of hot tearing demonstrated that the addition of Cu significantly reduced the hot tearing susceptibility (HTS) of Mg-7Zn-xCu-0.6Zr alloys due to the higher eutectic temperature and the shorter solidification temperature region.  相似文献   

11.
In this work, ultrasonic vibration (UV) and rheo-squeeze casting was first applied on the Mg alloy reinforced with long period stacking ordered (LPSO) structure. The semisolid slurry of Mg–Zn–Y alloy was prepared by UV and processed by rheo-squeeze casting in succession. The effects of UV, Zr addition and squeeze pressure on microstructure of semisolid Mg–Zn–Y alloy were studied. The results revealed that the synergic effect of UV and Zr addition generated a finer microstructure than either one alone when preparing the slurries. Rheo-squeeze casting could significantly refine the LPSO structure and α-Mg matrix in Mg96.9Zn1Y2Zr0.1 alloy without changing the phase compositions or the type of LPSO structure. When the squeeze pressure increased from 0 to 400 MPa, the block LPSO structure was completely eliminated and the average thickness of LPSO structure decreased from 9.8 to 4.3 μm. Under 400 MPa squeeze pressure, the tensile strength and elongation of the rheocast Mg96.9Zn1Y2Zr0.1 alloy reached the maximum values, which were 234 MPa and 17.6%, respectively, due to its fine α-Mg matrix (α1-Mg and α2-Mg grains) and LPSO structure.  相似文献   

12.
Mg–9Li–3Al–1.6Y alloys were prepared through mixture method. The microstructure, mechanical properties, and corrosion resistance of the as-cast and asextruded alloys were studied by optical microscopy(OM),scanning electronic microscopy(SEM), X-ray diffraction(XRD), mechanical properties testing, and electrochemical measurement. The as-cast Mg–9Li–3Al–1.6Y alloy with the average grain size of 325 lm is composed of b-Li matrix, block a-Mg, and granule Al_2Y phases. After extrusion, the grain size of the as-cast alloy is obviously refined and reaches to 75 lm; the strength and elongation of the extruded alloy are enhanced by 17.20 % and49.45 %, respectively, owing to their fine microstructure and reduction of casting defects. The as-extruded alloy shows better corrosion resistance compared to the as-cast one, which may be related to the low stored energy and dislocation density in the extruded alloy, also the homogenization treatment before extrusion.  相似文献   

13.
Ti–22Nb–xZr and Ti–22Nb–xMo (x = 0, 2, 4, 6, in atom percent) were prepared by an arc melting method. The alloys were solution‐treated at 1073 K for 1.8 ks followed by quenching them into ice water, and the electrochemical corrosion behavior in a 0.9% NaCl solution at 25 °C and neutral pH range of the solution‐treated alloys was evaluated by using electrochemical impedance spectroscopy, polarization curves and an equivalent circuit analysis. It was found that the microstructure of the solution‐treated Ti–22Nb alloy mainly contains β phase with small amount of α″ phase, and the addition of Zr or Mo to a Ti–22Nb alloy is efficient to stabilize the β phase. The resulting impedance parameters and passive current densities indicated that the corrosion resistance of the Ti–22Nb alloy was promoted significantly with the addition of Zr and Mo.  相似文献   

14.
The mechanical properties and microstructure evolution of Mg8Li3Al1Y alloy undergoing different rolling processes were systematically investigated. X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscopy as well as electron backscattered diffraction were used for tracking the microstructure evolution. Tensile testing was employed to characterize the mechanical properties. After hot rolling, the MgLi2Al precipitated in β-Li matrix due to the transformation reaction: β-Li?→?β-Li?+?MgLi2Al?+?α-Mg. As for the alloy subjected to annealed hot rolling, β-Li phase was clearly recrystallized while recrystallization rarely occurred in α-Mg phase. With regard to the microstructure undergoing cold rolling, plenty of dislocations and dislocation walls were easily observed. In addition, the microstructure of alloys subjected to annealed cold rolling revealed the formation of new fresh α-Mg grains in β-Li phase due to the precipitation reaction. The mechanical properties and fracture modes of Mg8Li3Al1Y alloys can be effectively tuned by different rolling processes.  相似文献   

15.
The effects of heat treatment on microstructures and hardening response of Mg–6Zn–0.5Er–0.5Ca(wt%) alloy were investigated by optical microscope(OM), scanning electron microscope(SEM), and transmission electron microscope(TEM) in this paper. The results show that the Mg–6Zn–0.5Er–0.5Ca alloy contains Mg_3Zn_6Er_1 quasicrystalline phase(Iphase) and Ca_2Mg_6Zn_3 phase under as-cast condition. Most of the Ca_2Mg_6Zn_3 phases and I-phases dissolve into matrix during heat treatment at 475 ℃ for 5 h. After the as-solution alloy was aged at 175 ℃ for 36 h, a large amount of MgZn_2 precipitate with several nanometers precipitate. It is suggested that the trace addition of Ca results in refining the size of the precipitate, and the presence of the nanoscale MgZn_2 phase is the main factor to improve the peak-aged hardness greatly to 87 HV, which increases about 40 % compared with that of as-cast alloy.  相似文献   

16.
The corrosion performances of Mg–4Y–xAl (x = 1, 2, 3, and 4 wt%) alloys in the 3.5% NaCl electrolyte solution are investigated by electrochemical tests, weight loss measurement and corrosion morphology observation. The results indicate that corrosion modes for the alloys are localized corrosion and the filiform type of attack. With Al concentration increasing from 1 to 4 wt%, the corrosion rate of Mg–4Y–xAl alloys decreases firstly and then increases, and WA42 alloy shows the best corrosion resistance. The addition of Al element to Mg–4Y alloys leads to the formation of Al2Y and Al11Y3 intermetallic compounds and reduces the proportion of Mg24Y5 phase. Corrosion resistance of the Mg–4Y–xAl alloys mainly depends on the size and distribution of the second phases. Besides, the addition of excessive Al can greatly consumes the Y element in the matrix, thus leading to a less protective film on the alloys. The effect of the relative Volta potential changes between the second phases and α-Mg on corrosion resistance of Mg–4Y–xAl alloys is insignificant. The main corrosion products of the Mg–4Y–xAl alloys are Mg(OH)2, Mg3(OH)5Cl·4H2O, Mg0.72Al0.28(CO3)0.15(OH)1.98(H2O)0.48, and Mg4Al2(OH)12CO3·3H2O.  相似文献   

17.
18.
The AZ91 alloy is composed of Mg17(Al, Zn)12 precipitates, an eutectic phase around these precipitates, AlMn intermetallic particles and an α-Mg solid solution (matrix). The corrosion behaviour of AZ91 was investigated at the microscale by means of the electrochemical microcell technique, which uses extremely small capillaries (diameters between 5 and 10 μm). Experiments were conducted in 0.1 M NaClO4 at 25 °C. The β-Mg17(Al, Zn)12 precipitates were found to have the highest corrosion resistance, whereas the eutectic phase was very active (pitting potential of approximately −1400 mV vs. Ag/AgCl). The α-Mg solid solution displayed better corrosion resistance than the eutectic phase.  相似文献   

19.
The microstructures of the as-cast and as-extruded Mg-9Li-xY alloys (x = 0, 0.3; wt%) were observed to investigate the effect of Y on the Mg-9Li alloy, and the crystallographic calculations between Mg24Y5 and the matrix were examined on the basis of the edge-to-edge matching model. The results indicated that with the addition of 0.3 wt% Y, the average grain size of α-Mg phases in the as-cast Mg-9Li alloy and β-Li phases in the as-extruded Mg-9Li alloy were reduced remarkably, which was caused by the formation of Mg24Y5 intermetallic compound. Furthermore, crystallographic calculations confirmed that Mg24Y5 particles were effective grain refiners for both α-Mg and β-Li phases in Mg-9Li alloy.  相似文献   

20.
Wang  Jing  Fang  Xiao-gang  Wu  Shu-sen    Shu-lin 《中国铸造》2017,14(3):199-204
To investigate the effects of solution temperature and the decomposition of I-phase on the microstructure, phase composition and mechanical properties of as-cast Mg-6Zn-1.4Y-0.6Zr alloy, solution treatment at 440 oC, 460 oC and 480 oC and further aging treatment were conducted on the alloy. The results indicate that the net-like intermetallic compounds(mainly I-phase) dissolve into the α-Mg matrix gradually with the increase of solution temperature from 440 oC to 480 oC. Besides, the I-phase decomposes completely at 480 oC, with the formation of fine W-phase(thermal stable phase) and Mg_7Zn_3 phase. In addition, a great number of fine and dispersive Mg-Zn binary phases precipitate in the α-Mg matrix during the aging treatment. Due to the increase of solute atoms and the precipitation of strengthening phases, such as W-phase and Mg-Zn phases, the optimal strength is obtained after solution treatment at 460 oC for 8 h and aged at 200 oC for 16 h. The yield strength(YS), ultimate tensile strength(UTS) and elongation are 208 MPa, 257 MPa and 3.8%, respectively. Compared with the as-cast alloy, the increments of YS and UTS are 117% and 58%, respectively, while the decrement of elongation is 46%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号