首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physics and mechanics of fibre-reinforced brittle matrix composites   总被引:1,自引:0,他引:1  
This review compiles knowledge about the mechanical and structural performance of brittle matrix composites. The overall philosophy recognizes the need for models that allow efficient interpolation between experimental results, as the constituents and the fibre architecture are varied. This approach is necessary because empirical methods are prohibitively expensive. Moreover, the field is not yet mature, though evolving rapidly. Consequently, an attempt is made to provide a framework into which models could be inserted, and then validated by means of an efficient experimental matrix. The most comprehensive available models and the status of experimental assessments are reviewed. The phenomena given emphasis include: the stress/strain behaviour in tension and shear, the ultimate tensile strength and notch sensitivity, fatigue, stress corrosion and creep.Nomenclature a i Parameters found in the paper by Hutchinson and Jensen [33], Table IV - a o Length of unbridged matrix crack - a m Fracture mirror radius - a N Notch size - a t Transition flaw size - b Plate dimension - b i Parameters found in the paper by Hutchinson and Jensen [33], Table IV - c i Parameters found in the paper by Hutchinson and Jensen [33], Table IV - d Matrix crack spacing - d s Saturation crack spacing - f Fibre volume fraction - f l Fibre volume fraction in the loading direction - g Function related to cracking of 90 ° plies - h Fibre pull-out length - l Sliding length - l i Debond length - l s Shear band length - m Shape parameter for fibre strength distribution - m m Shape parameter for matrix flaw-size distribution - n Creep exponent - n m Creep exponent for matrix - n f Creep exponent for fibre - q Residual stress in matrix in axial orientation - s ij Deviatoric stress - t Time - t p Ply thickness - t b Beam thickness - u Crack opening displacement (COD) - u a COD due to applied stress - u b COD due to bridging - v Sliding displacement - w Beam width - B Creep rheology parameter o/ o n - C v Specific heat at constant strain - E Young's modulus for composite - E o Plane strain Young's modulus for composites - Unloading modulus - E * Young's modulus of material with matrix cracks - E f Young's modulus of fibre - E m Young's modulus of matrix - E L Ply modulus in longitudinal orientation - E T Ply modulus in transverse orientation - E t Tangent modulus - E s Secant modulus - G Shear modulus - G Energy release rate (ERR) - G tip Tip ERR - G tip o Tip ERR at lower bound - K Stress intensity factor (SIF) - K b SIF caused by bridging - K m Critical SIF for matrix - K R Crack growth resistance - K tip SIF at crack tip - I o Moment of inertia - L Crack spacing in 90 ° plies - L f Fragment length - L g Gauge length - L o Reference length for fibres - N Number of fatigue cycles - N s Number of cycles at which sliding stress reaches steady-state - R Fibre radius - R R-ratio for fatigue (max/min) - R c Radius of curvature - S Tensile strength of fibre - S b Dry bundle strength of fibres - S c Characteristic fibre strength - S g UTS subject to global load sharing - S o Scale factor for fibre strength - S p Pull-out strength - S th Threshold stress for fatigue - S u Ultimate tensile strength (UTS) - S * UTS in the presence of a flaw - T Temperature - T Change in temperature - t Traction function for thermomechanical fatigue (TMF) - t b Bridging function for TMF - Linear thermal coefficient of expansion (TCE) - f TCE of fibre - m TCE of matrix - Shear strain - c Shear ductility - c Characteristic length - Hysteresis loop width - Strain - * Strain caused by relief of residual stress upon matrix cracking - e Elastic strain - o Permanent strain - o Reference strain rate for creep - Transient creep strain - s Sliding strain - Pull-out parameter - Friction coefficient - Fatigue exponent (of order 0.1) - Beam curvature - Poisson's ratio - Orientation of interlaminar cracks - Density - Stress - b Bridging stress - ¯b Peak, reference stress - e Effective stress = [(3/2)s ijsij]1/2 - f Stress in fibre - i Debond stress - m Stress in matrix - mc Matrix cracking stress - o Stress on 0 ° plies - o Creep reference stress - rr Radial stress - R Residual stress - s Saturation stress - s * Peak stress for traction law - Lower bound stress for tunnel cracking - T Misfit stress - Interface sliding stress - f Value of sliding stress after fatigue - o Constant component of interface sliding stress - s In-plane shear strength - ¯c Critical stress for interlaminar crack growth - ss Steady-state value of after fatigue - R Displacement caused by matrix removal - p Unloading strain differential - o Reloading strain differential - Fracture energy - i Interface debond energy - f Fibre fracture energy - m Matrix fracture energy - R Fracture resistance - s Steady-state fracture resistance - T Transverse fracture energy - Misfit strain - o Misfit strain at ambient temperature  相似文献   

2.
We have measured ac susceptibility, nuclear magnetic resonance, and nuclear heat capacity of two PtFe x samples with concentrations of magnetic impurities x = 11 ppm and 41 ppm at magnetic fields (0 ± 0.05) mTB248 mT. The susceptibility data have been measured at temperatures of 0.3 KT100 mK, no hint for nuclear magnetic ordering could be detected to a temperature of 0.3 K. The nuclear heat capacity data taken at 1.4 KT10 mK show enhanced values which scale with x at low polarization. This effect is described by a model assuming an internal magnetic field caused by the impurities. No indication for nuclear magnetic ordering could be detected to 1.4 K. The nuclear magnetic resonance experiments have been performed on these samples at 0.8 KT0.5 mK and 2.5 mTB22.8 mT as well as on three other samples with x = 5, 10, 31 ppm in a different setup at 40 KT0.5 mK and at 5.4 mTB200 mT. Spin-lattice and effective spin-spin relaxation times 1and 2 * of 195 Pt strongly depend on x and on the external magnetic field. No temperature dependence of 1and 2 * could be detected and the NMR data, too, give no hint for nuclear magnetic ordering to 0.8 K.  相似文献   

3.
We present measurements of the critical opalescence of helium-4. The results are analyzed by the Einstein and Ornstein-Zernike theory and the power laws. We obtain ==1.17±0.02, ==0.62±0.1,/=4.5±0.3,P c =1706.008 mm Hg, andT c =5,189.863 mK (T 58 ). The critical behavior of helium-4 is almost the same as that of classical fluids and the influence of the quantum nature of helium-4 is not as evident as has been claimed.  相似文献   

4.
The shear viscosity (T) in the Balian-Werthamer (BW) state of superfluid 3 He is calculated variationally throughout the region 0t 1(t=T/T c) from the transport equation for Bogoliubov quasiparticles. Coherence factors are treated exactly in the calculation of the collision integral. The numerical result for =s= s(T)/n(Tc) agree very well with experiment in the range 0.8t1.0. Analytic expressions = 0.577 (1–1.0008t) and =1–(23/64) [=(T)/k B T] are obtained in the low-temperature region and in the vicinity ofT c, respectively. From the numerical analysis it is shown that the latter equation is valid only in the temperature range 0.9997t1.0.Supported by the Research Institute for Fundamental Physics, Kyoto University.  相似文献   

5.
The structure at room temperature of a quenched TA6V titanium alloy has been investigated. This structure is + or + according to the treatment temperature; it is always metastable. During ageing the grains decomposed by the reaction + + +; this decomposition was accompanied by a large increase of the 0.2% yield stress. No structural modification was observed in. The and phase of TA6V were separately investigated in the form of single-phase alloys. The hardness of was insensitive to ageing, while was considerably hardened by and; we deduced that the strengthening of the minor phase during ageing is mainly responsible for the hardening of TA6V.  相似文献   

6.
The temperature field is determined in a circular plate with a system of thin extrinsic heat sources.Notation T temperature in the plate with the inclusions - r polar radius - polar angle - time - (r,) coefficient of thermal conductivity - (r,) heat transfer coefficient - C(r,) volume heat capacity - W(r,, ) specific intensity of the heat sources - half thickness of the plate - (x) Dirac's delta function - ¯T finite Fourier cosine transform of the temperature - p parameter for this transformation - T Laplace transform of the temperature - s its parameter - Iv(x) Bessel function with imaginary argument of order - K v (x) the MacDonald function of order - and dimensionless temperature - Po Pomerantz number - Bi Biot number - Fo Fourier's number - dimensionless polar radius - b1 * dimensionless radius of the circle on which the inclusions are placed - R* dimensionless radius of the plate Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 40, No. 3, pp. 495–502, March, 1981.  相似文献   

7.
A comprehensive analytical theory of symmetric DC SQUIDs is presented taking into account the effects of thermal fluctuations. The SQUID has a reduced inductance < 1/ where = 2LIc/0, L is the loop inductance, 0 is the flux quantum, and Ic is the critical current of the identical Josephson junctions which are assumed to be overdamped. The analysis, based on the two dimensional Fokker–Planck equation, has been successfully performed in first order approximation with considered a small parameter. All important SQUID characteristics (circulating current, current-voltage curves, transfer function, and energy sensitivity) are obtained. In the limit 1( = 2kBT/Ic0 is the noise parameter, kB is the Boltzmann constant, and T is the absolute temperature) the theory reproduces the results of numerical simulations performed for the case of small thermal fluctuations. It was found that for < 1 the SQUID energy sensitivity is optimum when is higher than 1/, i.e., outside the range for which the present analysis is valid. However, for 1 the energy sensitivity has a minimum at L = LF , where LF = ( 0 /2) 2/kB , and therefore, in this case, the optimal reduced DC SQUID inductance is opt = 1/, i.e., within the range for which the present analysis is valid. In contrast to the case of an RF SQUID, for a DC SQUID the transfer function decreases not only with increasing L/LF but also with increasing (as 1/). As a consequence, the energy sensitivity of a DC SQUID with < 1/ degrades more rapidly (as 4 ) with the increase of than that of an RF SQUID does (as 2 ).  相似文献   

8.
The finite integral transform method is used to obtain the solution of unsteady heat conduction problems for a hollow sphere with a moving internal boundary and various boundary conditions at the outer surface. For the solution of the problems of interest integral transform formulas are presented with kernels (16), (20), and (24) and the corresponding inversion formulas (18), (22), (26), (29) and characteristic equations (17), (21), (25), (28), (31), (33).Nomenclature a, thermal diffusivity and conductivity - t temperature of phase transformation - density - heat transfer coefficient - Q total quantity of heat passing through inner boundary - F latent heat of phase transformation - Fo(1,)=a/R 1 2 , Fo(i,)=/r i 2 , Fo(i, i)=a i/r i 2 Fourier numbers - Bi2=R2/ Biot number  相似文献   

9.
Deformation of a carbon-epoxy composite under hydrostatic pressure   总被引:1,自引:0,他引:1  
This paper describes the behaviour of a carbon-fibre reinforced epoxy composite when deformed in compression under high hydrostatic confining pressures. The composite consisted of 36% by volume of continuous fibres of Modmur Type II embedded in Epikote 828 epoxy resin. When deformed under pressures of less than 100 MPa the composite failed by longitudinal splitting, but splitting was suppressed at higher pressures (up to 500 MPa) and failure was by kinking. The failure strength of the composite increased rapidly with increasing confining pressure, though the elastic modulus remained constant. This suggests that the pressure effects were introduced by fracture processes. Microscopical examination of the kinked structures showed that the carbon fibres in the kink bands were broken into many fairly uniform short lengths. A model for kinking in the composite is suggested which involves the buckling and fracture of the carbon fibres.List of symbols d diameter of fibre - E f elastic modulus of fibre - E m elastic modulus of epoxy - G m shear modulus of epoxy - k radius of gyration of fibre section - l length of buckle in fibre - P confining pressure (= 2 = 3) - R radius of bent fibre - V f volume fraction of fibres in composite - t, c bending strains in fibres - angle between the plane of fracture and 1 - 1 principal stress - 3 confining pressure - c strength of composite - f strength of fibre in buckling mode - n normal stress on a fracture plane - m strength of epoxy matrix - shear stress - tangent slope of Mohr envelope - slope of pressure versus strength curves in Figs. 3 and 4.  相似文献   

10.
Various experimental studies on a new fast Ag+ ion-conducting composite electrolyte system: (1–x) (0.75Agl0.25AgCl)xAl2O3 are reported. Undried Al2O3 particles of size <10 m were used. The conventional matrix material Agl has been replaced by a new mixed 0.75Agl0.25AgCl quenched and/or annealed host compound. Conductivity enhancements 10 from the annealed host and 3 times from the quenched host obtained for the composition 0.7(0.75Agl0.25AgCl)0.3Al2O3, can be explained on the basis of the space charge interface mechanism. Direct measurements of ionic mobility as function of temperature together with the conductivity were carried out for the best composition. Subsequently, the mobile ion concentration n values were calculated from and a data. The value of heat of ion transport q* obtained from the plot of thermoelectric power versus 1/T supports Rice and Roth's free ion theory for superionic conductors. Using the best composition as an electrolyte various solid state batteries were fabricated and studied at room temperature with different cathode preparations and load conditions.  相似文献   

11.
The problem of the interaction of two coaxial explosions in a barometric atmosphere is solved numerically based on the complete system of Navier-Stokes equations. Basic regularities that occur in the interference of two spherical shock waves of different intensities are studied. The last stage of the processes, when shock wave processes become unimportant and convection plays a dominant part, is investigated.Notation t time - r, z cylindrical coordinates - v=(u, ) velocity - density - p pressure - T temperature - ,k dynamic viscosity and thermal conductivity - V(t) calculation region - f(t), ± (t boundaries of the calculation region - z 1 ,z 2 altitudes of the centers of the lower and upper explosions - R 1 ,R 2 initial radii of the regions involved in the explosions - altitude of the homogeneous atmosphere - g acceleration due to gravity - adiabatic exponent - , , parameters - M Mach number - Re Reynolds number - Pr Prandtl number - c p ,c v specific heats Department of Theoretical Problems, Russian Academy of Sciences, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 66, No. 6, pp. 657–661, June, 1994.  相似文献   

12.
The interactions of second-phase particles, liquid droplets or gas bubbles with a solidification front form the basis of various materials synthesis and purification processes and the design of microstructures in cast metal-matrix composites, as well as frost heaving and biological cell interactions. The physical mechanisms of this interaction phenomenon are based upon surface thermodynamic factors, solidification parameters, and fluid dynamic effects such as fluid drag and buoyancy. An overview is presented of the role of various factors which determine the nature as well as the kinetics of foreign particle-solidification front interactions, and the current status and limitations of the various theoretical models of the phenomenon.Nomenclature V Critical velocity for particle engulfment - L Latent heat of fusion - a 0 Atomic radius - Atomic volume - D 1 Diffusion coefficient in the liquid - T Temperature - R Particle radius - S Entropy of fusion - s Density of the solid - 1 Density of the liquid - p Density of the particle - k Boltzmann's constant - v Difference in the specific volumes of solid and liquid - G Temperature gradient - h 0 Critical gap thickness - R b Radius of surface bump on particle - sl Surface energy of solid-liquid interface - pl Surface energy of particle-liquid interface - sp Surface energy of solid-particle interface - Viscosity of the melt - g Acceleration due to gravity - Density difference between particle and liquid - A Hamaker constant - B A/6 - K p Thermal conductivity of the particle - K l Thermal conductivity of the liquid - C Bulk concentration of the liquid - m l Slope of liquidus line - K c Partition coefficient - C p Specific heat of the particle - C 1 Specific heat of the liquid  相似文献   

13.
The article examines the problem of thermal inertia on the basis of an auxiliary-wall type heat meter, it demonstrates the boundaries of applicability of the approximate relationship for calculating non-steady-state heat fluxes.Notation q() non-steady-state heat flux through the heat meter - i,a i thermal conductivity, thermal diffusivity, and thickness of the heat meter, respectively - 2,a 2 thermal conductivity and thermal diffusivity, respectively, of the base of the heat meter - t() temperature gradient over the thickness of the heat meter - index of thermal inertia - time - s parameter of Laplace transform - t1 (x, ) temperature of the heat meter at point x - t2(x, ) temperature of the base - tc ambient temperature - Yq(s) transfer function from the heat flux q() to the temperature gradient t() Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 39, No. 2, pp. 298–305, August, 1980.  相似文献   

14.
The effect of gravity on the turbulence structure of an inclined two-phase jet is evaluated according to the Prandtl theory of mixing length.Notation Cx drag coefficient for a particle - Dp particle diameter - gi components of the acceleration g due to gravity acting on a particle in the direction of jet flow (gi=g sin ) and in the direction normal to it (gi=g cos ) - Vpoi ±, Vgoi ± fluctuation components of the velocities of the particles and gas, respectively, at the end of a mole formation - Vfi free-fall velocity of a particle - l u mixing length - mp particle mass - t p length of time of particle-mole interaction - Vpi ±, Vgi ± positive and negative fluctuation velocities of particles and of the gas respectively, with the components up ±, ug ±, vp ±, vg ±, k=Vgoi/Vfi - Vi ± relative velocity of the gas - jet inclination angle relative to the earth's surface - empirical constant - u, jet boundaries in terms of velocity and concentration - u=y/ u dimensionless velocity ordinate - =y/ dimensionless concentration ordinate - admixture concentration - um, m velocity and the concentration of the admixture at the jet axis - g dynamic viscosity of the gas - s, g densities of the particle material and of the gas - g, p shearing stresses in the gas and in the gas of particles - m, 0 shearing stresses in the mixture and in pure gas, respectively Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 40, No. 3, pp. 422–426, March, 1981.  相似文献   

15.
An equation is obtained for the breakup radius with consideration of tipping moments and Laplacian pressure forces acting on the liquid ridge at the critical point.Notation K, n rhenological constants - density - surface tension - r current cup radius - R maximum cup radius - rc critical radius for film breakup - ¯r=¯r=r/R dimensionless current radius - ¯rc=rc/R dimensionless critical radius - 0, c actual and critical film thicknesses - current thickness - Rr ridge radius - h0 ridge height - h current ridge height - 0 limiting wetting angle - current angle of tangent to ridge surface - angle between axis of rotation and tangent to cup surface - angular velocity of rotation - q volume liquid flow rate - v1 and v meridional and tangential velocities - =4vv lm/r,=4vm/r dimensionless velocities - M moments of surface and centrifugal forces - Mv moment from velocity head - pr pressure within ridge - Pvm pressure from velocity head - pm, ppm pressures from centrifugal force components tangent and normal to cup surface - deviation range of breakup radius from calculated value - ¯rmax, ¯rmin limiting deviations of breakup radius - c angle of tangent to curve c0=f(¯r) at critical point - t random oscillation of ratio c/c Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 39, No. 1, pp. 51–56, July, 1980.  相似文献   

16.
By comparing the morphology and physical properties (averaged over the scale of 1 to 10m) of a crazed and uncrazed polymer, it can be concluded that crazing is a new phase development in the initially homogeneous material. The present study is based on recent work on the general thermodynamic explanation of the development of a damaged layer of material. The treatment generalizes the model of a crack-cut in mechanics. The complete system of equations for the quasiequilibrial craze growth follows from the conditions of local and global phase equilibrium, mechanical equilibrium and a kinematic condition. Constitutive equations of craze growth-equations are proposed that are between the geometric characteristics of a craze and generalized forces. It is shown that these forces, conjugated with the geometric characteristics of a craze, can be expressed through the known path independent integrals (J, L, M,). The criterion of craze growth is developed from the condition of global phase equilibrium. F Helmholtz's free energy - G Gibb's free energy (thermodynamic potential) - f density ofF - g density ofG - T absolute temperature - S density of entropy - strain tensor - components of - stress tensor - components of - y stress along the boundary of an active zone (yield stress) - b stress along the boundary of an inert zone - applied stress - value of at the moment of craze initiation - K stress intensity factor - C tensor of elastic moduli - C –1 tensor of compliance - internal tensorial product - V volume occupied by sample - V 1 volume occupied by original material - V 2 volume occupied by crazed material - V boundary ofV - (V) vector-function localized on V - (x) characteristic function of an area - (x) variation of(x) - (x) a finite function - tensor of alternation - components of the boundary displacement vector - l components of the vector of translation - n components of the normal to a boundary - k components of the vector of rotation - e symmetric tensor of deviatoric deformation of an active zone - expansion of an active zone - J (i) ,L k (i) ,M (i),N (i) partial derivatives ofG (i) with respect tol , k, ande , respectively - [ ] jump of the parameter inside the brackets - thickness of a craze - 2l length of a craze - 2b length of an active zone - l c distance between the geometrical centres of the active zone and the craze - * craze thickness on the boundary of an active and the inert zone - l * craze parameter (length dimension) - A craze parameter (dimensionless) - * extension of craze material  相似文献   

17.
Precise parallel- and tilted-field radiofrequency size-effect measurements of the temperature dependence of the electron scattering frequency v(T) have been made on symmetric orbits on the first-, second-, and third-band Fermi surface sheets in samples with normals 11\-20 and 10\-10. The limiting point measurements on the third-band lens near 0001 provide the clearest evidence for a T 2 contribution to v(T) that is the right order of magnitude for electron-electron scattering in cadmium. In parallel field measurements on orbits on the first and second bands (including a broken orbit) we find v(T) T 2 + T 3. On these orbits the values for are 5–20 times larger than for the limiting point and other orbits on the third band. The temperature dependence of v(T\> 2 K) on extremal, limiting point, and open orbits on the second- and third-band Fermi surface sheets can be well accounted for by a simple plane wave model for electron-phonon intersheet scattering. This contribution to v(T) turns on approximately as exp (–T t /T) above T t /10, where T t is the minimum gap temperature on the orbit for intersheet scattering by quasi-transversely polarized phonons. The fitted gap temperatures as well as the other parameters of the plane wave model agree well with the known dimensions of the Fermi surface of cadmium. While clear evidence is lacking, we note that this intersheet scattering model can also be used to explain the large T 2 coefficients obtained for the first- and second-band orbits, where, in fact, one has gap temperatures T t smaller than 1 K.Supported by the Fonds National Suisse de la Recherche Scientifique.  相似文献   

18.
A. Siginer 《Acta Mechanica》1987,66(1-4):233-249
Summary The free surface motion of a layered medium of liquids in a gravitationally stable configuration, resting on top of a layer of mercury, driven by a torsionally oscillating, cylindrical outer wall is investigated. The non-linear problem in the unknown physical domain is expressed as a series of linear problems in the rest state by means of a domain perturbation method. The flow variables and the stress are expanded into series in terms of the amplitude of the oscillation of the cylinder. The shapes in the mean of the interfaces between layers and the flow field are determined up to second order in the perturbation parameter, the amplitude of the oscillation.Nomenclature Density - Modified pressure field - Amplitude of the oscillation - Frequency of the oscillation - Interfacial value of the surface tension - Dynamic viscosity - , , Material functions - Complex viscosity - Stream function - Position vector at timet= - 1, 2 The first two Rivlin-Ericksen constants - Quadratic shear relaxation modulus - ,t Time - u Velocity vector - u,v,w Velocity components - S Extra stress tensor - h Interface elevation - D Stretching tensor - G Strain history tensor - A 1 The first Rivlin-Ericksen tensor - J Mean curvature - p Pressure - t Unit tangent vector - n Unit normal vector - G Shear relaxation modulus - X Position vector in the rest stateD 0 - r, ,z Rest state coordinates - x Position vector in the physical spaceD - R, ,Z Physical space coordinates - r 0 Radius of the oscillating cylinder - e r ,e ,e z Physical basis vectors inD 0 - e R ,e ,e Z Physical basis vectors inD - Indicates the jump in the enclosed quantity across an interface With 1 FigurePresented at the Xth Canadian Congress of Applied Mechanics, The University of Western Ontario, London, Ontario, Canada, June 2–7, 1985.  相似文献   

19.
The cooling and average local solidification times were determined for slow solidifiation of Al-4.4 wt% Cu alloy under natural convection and under electromagnetically forced axisymmetric rotation during liquid cooling and solidification in graphite moulds. Cooling rates were measured within situ thermocouples. The conditions needed to stabilize the radial temperature gradient with rotation were established. The microstructure size decreased with increasing rotation, as did the local solidification times. The average grain and dendrite size without imposed rotation is coarser near the mould wall compared with the centre of the casting. This trend is reversed with imposed rotation. Rotation also led to a smaller spread of grain and dendrite size at any chosen height of the casting. These results are discussed in relation to existing theories, and several reasons for an improved heat transfer coefficient with rotation are presented. Forced convective solidification was then carried out for various shapes of integral investment cast Nimonic-90 alloy solidifying under modified conditions that prevented columnar grain formation. Similar results to those recorded for the aluminium case were obtained and are presented here. The major conclusion is that observations indicating a reduction of microstructure spacing during forced convection should also consider improved heat extraction at the mould-metal interface.List of symbols Gr Grashof number =gTZ 3 3/ 3 - g r acceleration in radial direction - g acceleration in direction - g z acceleration inZ direction (gravity) - h heat transfer coefficient - k l thermal conductivity of liquid - Nu z Nusselt number =hZ/k l - Pr Prandtl number =/ - Ra Rayleigh numberGr Pr - R radius of mould - Re r Reynolds number =V 0 R/ - T temperature - T temperature difference in radial direction - Ta Taylor number = 24H 4 W 2/ 2 - V velocity - W r.p.m. - thermal diffusivity - coefficient of volume expansion - viscosity - density Mr G. S. Reddy is also a post graduate student registered at the Banaras Hindu University, Varanasi, India.  相似文献   

20.
The Gibbs' energies of formation of BaCuO2, Y2Cu2O5 and Y2BaCuO5 from component oxides have been measured using solid state galvanic cells incorporating CaF2 as the solid electrolyte under pure oxygen at a pressure of 1.01×105 Pa BaO + CuO BaCuO2 G f,ox o (± 0.3) (kJ mol–1)=–63.4–0.0525T(K) Y2O3 + 2CuO Y2Cu2O2 G f,ox o (± 0.3) (kJ mol–1)=18.47–0.0219T(K) Y2O3 + BaO + CuO Y2BaCuO5 G f,ox o (± 0.7) (kJ mol–1)=–72.5–0.0793T(K) Because the superconducting compound YBa2Cu3O7– coexists with any two of the phases CuO, BaCuO2 and Y2BaCuO5, the data on BaCuO2 and Y2BaCuO5 obtained in this study provide the basis for the evaluation of the Gibbs' energy of formation of the 1-2-3 compound at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号