首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
张玉军 《岩土工程学报》2009,31(8):1213-1218
对于具有相同厚度的空间8节点等参数节理单元,考虑温度和孔隙水压力的影响,将其的应力–位移关系加以拓展,建立了相应的应力平衡方程、水连续性方程、能量守恒方程,使之可用于分析饱和–非饱和岩体中存在不连续面时的热–水–应力耦合问题,并结合实体单元,研制出相应的三维有限元程序。针对一个假定的核废物地质处置模型,通过有、无节理的热–水–应力耦合过程数值分析,显示与无节理的情况相比,由于节理的存在使得近场岩体中的温度、应力及水流速度的分布与数值都发生了明显的变化,特别是节理附近的岩体中有某种水流"冷却"作用和一定程度的应力集中现象,其它部位岩体的应力也有所增加。  相似文献   

2.
渗流–应力–化学耦合作用下岩石裂隙渗透特性试验研究   总被引:3,自引:2,他引:1  
 为研究渗流–应力–化学耦合作用下岩石裂隙渗透特性变化规律,设计3组试验工况,在改变渗透压以及化学溶液的条件下,分别测定每种工况下的渗出水流量、渗出水离子浓度值以及渗出水pH值变化情况,进而得出裂隙渗透特性变化情况。通过处理试验数据,总结分析各因素对裂隙渗透特性的影响,并建立裂隙开度变化率与渗出水中钙离子浓度值之间的关系式。试验结果表明,渗出水流量、裂隙开度总体趋势是随着时间逐渐减小的,最终趋于稳定状态;增大渗透压,稳定状态会被打破,裂隙的流量和开度都会增大,但最终趋于另一个稳定状态;化学溶液对岩体裂隙的侵蚀性大,对岩体渗透性的影响更明显。通过分析和提炼渗出水流量、裂隙开度、渗出水的离子浓度值以及渗出水的pH值等随时间变化的数据,及它们之间的内部关系,在理论上描述岩体裂隙在渗流–应力–化学耦合作用下的渗透特性,进一步揭示渗流–应力–化学耦合作用机制。  相似文献   

3.
根据多孔介质中温度、渗流及应力之间复杂的耦合关系,基于连续介质力学和混合物理论,导出变形多孔介质热–流–固三场耦合模型及其控制方程,探讨有限元法的求解过程,以ABAQUS软件为求解器,在MATLAB语言环境下编制相应的计算程序,并通过典型算例考证程序的正确性。然后研究石油钻井过程中的热–流–固耦合作用过程,详细分析场耦合作用对井壁孔隙压力、温度和应力的影响,计算结果表明,热–流–固耦合作用对井壁稳定有重要的影响,应全面考虑各物理场之间的耦合作用。研究成果为分析岩土介质多场耦合过程提供一条有效的途径,从而为进一步研究温度–渗流–应力–化学(THMC)耦合问题奠定基础。  相似文献   

4.
 引入裂隙开度的压力溶解和自由面溶解/沉淀模型,针对一个假设的位于饱和双重孔隙–裂隙岩体中的高放废物地质处置库,拟定3种计算工况:(1) 裂隙开度是压力溶解和自由面溶解/沉淀的函数;(2) 裂隙开度仅随压力溶解而变化(这2种工况中基岩的孔隙率亦是应力的函数);(3) 裂隙开度和基岩的孔隙率均为常数,进行热–水–应力耦合的二维有限元分析,考察岩体中的温度、裂隙开度及渗透系数、孔隙水压力、地下水流速和应力的变化、分布情况。结果表明:自由面溶解/沉淀引起的裂隙开张及渗透系数增量的绝对值要明显大于压力溶解产生的裂隙闭合及渗透系数减量的绝对值,而压力溶解对裂隙的开度及其渗透系数的影响较小;同时计入压力溶解和自由面溶解/沉淀相比于仅考虑压力溶解,同时计入压力溶解和自由面溶解/沉淀的裂隙开度及其渗透系数分别约为仅考虑压力溶解时的1.5和7.0倍;在释热温度场的作用下,计算域中的裂隙水压力随时间先上升再下降,但变化幅度不大;3种工况下岩体中的应力量值及分布差别很小。  相似文献   

5.
热–水–应力耦合模型及FEBEX原位试验二维有限元分析   总被引:1,自引:0,他引:1  
从建立应力平衡方程、水连续性方程、能量守恒方程和弹塑性矩阵入手,提出了一个饱和–非饱和孔隙介质中且可考虑膨胀应力的热–水–应力耦合模型,并编制了相应的二维有限元程序。以高放射性核废料地质处置的FEBEX原位试验为模拟对象进行了数值分析,比较了实测值和计算值,从而验证了程序的正确性并从分析结果中得到了一些有益的认识。  相似文献   

6.
针对高放射性核废料地质处置中水及水蒸汽二相共存的非饱和孔隙岩体,根据相关的理论,推导了应力平衡方程、流体连续性方程及能量守恒方程,使用Galerkin方法将各控制方程分别在空间域和时间域进行离散,初步开发出了相应的分析热–水–应力耦合弹塑性问题的二维有限元程序。通过一个核废料处置概念库的计算认识到:高放废物地质处置后的几十年内,缓冲层中的温度及液相饱和度均上升,同时该区域内要出现明显的应力、孔隙水压力、温度、液相饱和度和气相饱和度的集中现象。  相似文献   

7.
库水位上升产生的浮力作用和库水位骤降时产生的渗透动水压力,将改变原有的水–边坡作用环境与条件,不利于库区边坡稳定。结合三峡库区马家沟I号滑坡的现场监测成果以及库水位波动数据,利用数值模拟方法,建立真三维模型。采用有限差分程序软件内置的Fish语言将分别考虑库水位上升和下降对坡面产生的静水压力作用、动水压力作用耦合于有限差分程序软件,对滑坡在库水位骤然上升与下降的位移和应力场进行分析,研究应力–渗流耦合作用下抗滑桩加固库区滑坡位移和受力特征,探讨滑坡–抗滑桩相互作用体系的防治效果。结果表明:抗滑桩与土体形成土拱效应以及抗滑桩阻滑效应相互作用下防治滑坡效果明显;库水位骤降产生的动水压力相比于库水位骤升产生的静水压力对滑坡–抗滑桩作用体系的减弱作用更大;数值模拟方法为对库水位骤变下滑坡–抗滑桩体系相互作用三维分析具有一定的指导意义。  相似文献   

8.
 岩石热破裂的研究只有考虑各种矿物组分造成的岩石的非均匀性,才能更客观地反映岩石热破裂的本质。利用数字图像处理技术数字化表征岩石内部矿物颗粒的几何形态,充分考虑岩石真实的细观结构,结合细观损伤力学和热弹性理论,建立能更客观的分析岩石热–力耦合作用下破裂过程的数值模型。以花岗岩为例,运用数值模型研究花岗岩在温度和压缩荷载共同作用下的力学行为和破裂过程。研究结果表明,温度对岩石的力学性质和破裂演化过程影响显著,热破裂裂纹多发生在矿物颗粒边界处,并沿颗粒边界扩展,局部会形成闭合多边形,其热破裂演化过程与试验结果基本相符,从而验证了数值模型的合理性和有效性,该数值模型为细观尺度定量研究岩石热破裂提供一种新的方法。  相似文献   

9.
以一个1∶2大比例模型结构–地基的动力相互作用模型试验为基础,结合通用有限元程序MSC.Marc,对成层地基–桩基–结构动力相互作用体系进行了三维有限元分析。计算中采用考虑土非线性特征改进的黏弹性人工边界模拟外部土域,利用考虑动力相互作用中桩土分离、滑移以及桩基提离效应的接触模型反映桩土接触界面特性,并引入阻尼项表征桩土动力作用中的能量损耗,土体采用等效线性模型。通过计算分析与试验的比较研究,验证了计算模型和分析方法的合理性,进行了地震动输入下的地震反应分析,为地基–结构动力相互作用的进一步研究奠定了基础。  相似文献   

10.
 针对当前垃圾填埋场灾变过程预测与控制的迫切需求,结合垃圾填埋场及其周围复杂而特殊的环境地质条件,从温度–渗流–应力–化学(T-H-M-C)多场耦合角度深入分析垃圾填埋场灾变过程的演化机制与开展多场耦合研究的必要性。提出填埋气体运移的微生物降解–温度–渗流(B-T-H)耦合模型、考虑好氧和厌氧微生物降解作用的垃圾渗沥液污染物迁移转化渗流–微生物降解–化学(H-B-C)耦合模型、复合衬垫系统污染物运移渗流–化学(H-C)耦合模型以及考虑热量变化和水蒸气迁移过程对开裂过程影响的填埋场封场覆盖系统干燥开裂温度–渗流–应力(T-H-M)耦合模型,为垃圾填埋场灾变过程的预测和安全性评价提供有效的分析手段。提出一套多场耦合测试分析方法与试验技术,开发集监测、控制与数据采集于一体的填埋场中污染物传输的多场耦合测试分析系统。形成一套填埋场污染物多参数远程同步监测方法与技术,研制集实时监测与视频监督于一体的垃圾填埋场污染物远程在线监督系统。针对多场耦合作用下封场覆盖系统开裂问题,提出新型环保的垃圾填埋场封场覆盖生态污泥腾发覆盖技术(EST)。上述研究成果可为垃圾填埋场灾变过程的预防与控制提供科学手段和技术支持,同时对于丰富和拓宽多场多相耦合理论的发展具有重要的理论意义和应用价值。  相似文献   

11.
 基于广义热弹性理论,引入热松弛时间,对Biot波动方程进行修正,建立了考虑温度效应的多孔饱和地基在移动荷载作用下的动力控制方程。利用Fourier变换方法,得到地基中温度增量、应力、位移和孔隙水压力在变换域中的一般解,结合热源输入条件和地基边界条件,确立时域内的温度增量、应力、位移和孔隙水压力的积分形式解答。利用Fourier逆变换方法和自适应数值积分算法得到了相应的数值结果。结果可退化为静荷载作用下的弹性地基解答,并与经典Flamant解进行比较,显示出较好的一致性。通过数值计算讨论不同的热源输入对地基温度增量场、应力场、位移场以及孔隙水压力的影响。结果表明:温度增量场受热源输入条件的影响很小,而应力、位移和孔隙水压力受热源输入的影响很明显。  相似文献   

12.
考虑介质和流体的压缩性,根据Biot理论和弹性壳体理论,在频率域内研究了饱和分数导数粘弹性土体-半封闭圆形隧道壳体衬砌系统耦合振动。将土体视为液固饱和多孔介质,选择反映介质流变特性的分数导数模型描述土骨架的应力-位移本构关系,又引入部分透水的边界条件,得到了饱和粘弹性土体中半封闭隧洞内边界分别在轴对称荷载和流体压力作用下位移、应力和孔压的表达式。进行了参数分析,研究表明:轴对称荷载条件下,分数导数阶数对系统响应的影响远大于流体压力情形下的动力响应,且存在明显的共振效应,但流体压力条件下不产生共振现象。  相似文献   

13.
高华喜  闻敏杰 《岩土工程学报》2012,34(10):1819-1826
基于Biot理论,在频率域内研究了黏弹性分数导数型饱和土中球形空腔的动力响应。利用分数阶导数黏弹性模型描述土骨架的应力–应变本构关系,并采用与土体孔隙率有关的应力系数合理地确定了衬砌和孔隙水分别承担的内水压力值。通过土体和衬砌接触面处的连续性边界条件,得到了内水压力作用下黏弹性分数导数型饱和土体中球形空腔的稳态动力响应。考察了物性参数对响应幅值的影响,研究表明:土体黏性和材料特性以及多孔柔性衬砌和饱和土的相对渗透性,对系统响应有较大的影响。  相似文献   

14.
基于Biot两相介质理论,采用一种高精度的间接边界积分方程法(IBIEM),研究了平面SV波在饱和半空间中隧道衬砌周围散射的基本规律,并给出了不同参数下地表位移幅值、衬砌动应力集中因子及表面孔隙水压分布图和相应的频谱结果。数值分析表明:饱和半空间隧道衬砌对SV波的散射特征取决于围岩介质孔隙率、入射波的频率和角度、隧道埋深等因素;隧道外壁透水状态对地表位移和隧道应力影响不大;不同角度SV波入射下,隧道应力集中部位有很大差别,且随半空间介质孔隙率增大,应力集中越发显著;衬砌外壁孔隙水压峰值可达到入射波应力幅值的4倍,且30°斜入射下幅值明显大于0°垂直入射情况;衬砌上方附近不同点位位移频谱特征差异显著,斜入射情况位移放大效应明显;随埋深增大,地表位移幅值和衬砌表面动应力谱振荡更为剧烈,但幅值会有所降低。另外,按波速比等效的单相介质模型可以近似计算SV波入射下隧道–饱和围岩的位移场和应力场。  相似文献   

15.
Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress–strain state of the soil layers and freezing process. In the present paper, a thermo-hydro-mechanical (THM) model for freezing of water-saturated soil is proposed to study the effects of frost heave and water migration in frozen soils on the formation of a frozen wall and subsequent excavation activity for sinking a vertical shaft. The governing equations of the model are formulated relative to porosity, temperature, and displacement which are considered as primary variables. The relationship between temperature, pore water, and ice pressure in frozen soil is established by the Clausius–Clapeyron equation, whereas the interaction between the stress–strain behavior and changes in porosity and pore pressure is described with the poromechanics theory. Moreover, constitutive relations for additional mechanical deformation are incorporated to describe volumetric expansion of soil during freezing as well as creep strain of soil in the frozen state. The ability of the proposed model to capture the frost heave of frozen soil is demonstrated by a comparison between numerical results and experimental data given by a one-sided freezing test. Also to validate the model in other freezing conditions, a radial freezing experiment is performed. After the validation procedure, the model is applied to numerical simulation of artificial freezing of silt and sand layers for shaft sinking at Petrikov potash mine in Belarus. Comparison of calculated temperature with thermal monitoring data during active freezing stage is presented. Numerical analysis of deformation of unsupported sidewall of a shaft inside the frozen wall is conducted to account for the change in natural stress–strain state of soil layers induced by artificial freezing.  相似文献   

16.
 通过分析多孔介质孔隙水的相变过程,研究孔隙冰与孔隙水含量随温度改变的变化规律,建立描述冷冻条件下孔隙冰与孔隙水饱和度的数学关系式。通过引入低温多孔介质有效孔隙压力概念,建立基于多孔连续介质力学理论的低温多孔介质孔隙压力变化的耦合模型,提出低温冻结情况下饱和非饱和多孔介质的体积热膨胀系数表达式。应用现有的试验成果论证此研究模型的正确性。研究成果表明建议的模型能够正确地模拟正冻孔隙介质的有效孔隙压力和骨架应力,并能反映冻胀融缩的变形特点,为科学研究低温多孔介质的应力与变形特点提供合理可靠的方法。  相似文献   

17.
饱和地基二维动力Biot固结分析   总被引:4,自引:0,他引:4       下载免费PDF全文
根据Biot平面动力固结方程,运用积分变换的方法,建立了周期荷载作用下单层地基的二维Biot动力固结的函数表达式。根据下边界为不透水基岩的边界条件,获得了地基表面作用周期荷载时地基内任意点应力(包括孔压)、位移(包括流体流量)的一般积分形式解。根据算例,研究了在周期荷载作用下,地基中的超静孔隙水压力、位移的幅值随动力渗透系数变化的一般规律。  相似文献   

18.
上覆弹性板双层地基在移动荷载作用下的动力响应   总被引:1,自引:0,他引:1  
 用Fourier变换及逆变换对移动荷载作用下路基路面系统的动力响应问题进行研究。考虑路基路面相互作用,假设一条形移动荷载作用在路面板的表面,地基以地下水位面为分界面分为双层,水位面以上为单相弹性土层,以下为饱和土层。考虑地基土层厚度有限,利用Lame对位移场的分解理论,引入势函数,并运用Fourier变换分别对弹性土层和饱和土层进行分析。在Fourier变换域内,结合边界条件,联立路面板、弹性土层和饱和土层的运动方程,得到土体竖向位移、应力和饱和土层内孔隙水压力的表达式;同时利用离散Fourier逆变换得到数值计算结果。计算结果表明,荷载速度、频率,饱和土层的渗透系数对地表竖向位移的影响很大;弹性土层厚度对竖向位移的影响依赖于荷载速度;弹性土层厚度以及弹性土层和饱和土层的相对刚度比对孔隙水压力有非常明显的影响。  相似文献   

19.
针对目前普遍存在的隧道路面渗漏水现象,基于多孔介质理论,通过建立隧底结构FLAC3D流固耦合数值计算模型,分析了隧底结构形式、孔隙率在交通荷载作用下的动水压力响应特征。研究结果表明:动水压力长消存在一定的规律性,负动孔隙水压力形成的泵吸作用是隧底结构水害发生的根本原因。隧底采用仰拱结构能够有效降低动水压力峰值,大幅降低负动孔隙水压力(泵吸力);无仰拱模式下,孔隙率是影响动水压力的一个重要因素,动孔隙水压力随着孔隙率的增加而增大;车辆荷载对隧底水害发生的影响较大,且超载引起的动水压力峰值最为显著,是造成公路隧底水损坏的主要荷载来源。  相似文献   

20.
粘弹性饱和土中球空腔的动力响应   总被引:8,自引:0,他引:8  
采用工程上通用的饱和土力学模型,考虑土骨架的粘性以及流体与固体之间的耦合作用,利用Laplace变换求解了粘弹性饱和土中球空腔的动力响应问题,得到了变换域内的解析解.借助数值Laplace反变换,数值分析了粘弹性饱和土中球空腔动力响应的位移、应力及孔压的变化规律.为分析地下结构动力响应提供了一种有效的方法,模型符合工程实际,有一定的工程应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号