首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
We report that the Bjornstad syndrome gene maps to chromosome 2q34-36. The clinical association of sensorineural hearing loss with pili torti (broken, twisted hairs) was described >30 years ago by Bjornstad; subsequently, several small families have been studied. We evaluated a large kindred with Bjornstad syndrome in which eight members inherited pili torti and prelingual sensorineural hearing loss as autosomal recessive traits. A genomewide search using polymorphic loci demonstrated linkage between the disease gene segregating in this kindred and D2S434 (maximum two-point LOD score = 4.98 at theta = 0). Haplotype analysis of recombination events located the disease gene in a 3-cM region between loci D2S1371 and D2S163. We speculate that intermediate filament and intermediate filament-associated proteins are good candidate genes for causing Bjornstad syndrome.  相似文献   

2.
Benign recurrent intrahepatic cholestasis (BRIC) is an autosomal recessive liver disease characterized by multiple episodes of cholestasis without progression to chronic liver disease. The gene was previously assigned to chromosome 18q21, using a shared segment analysis in three families from the Netherlands. In the present study we report the linkage analysis of an expanded sample of 14 BRIC families, using 15 microsatellite markers from the 18q21 region. Obligate recombinants in two families place the gene in a 7-cM interval, between markers D18S69 and D18S64. All intervening markers had significant LOD scores in two-point linkage analysis. Moreover, we identified one family in which the BRIC gene seems to be unlinked to the 18q21 region, or that represents incomplete penetrance of the BRIC genotype.  相似文献   

3.
We report the identification of a new locus for autosomal dominant limb-girdle muscular dystrophy (LGMD1) on 7q. Two of five families (1047 and 1701) demonstrate evidence in favor of linkage to this region. The maximum two-point LOD score for family 1047 was 3.76 for D7S427, and that for family 1701 was 2.63 for D7S3058. Flanking markers place the LGMD1 locus between D7S2423 and D7S427, with multipoint analysis slightly favoring the 9-cM interval spanned by D7S2546 and D7S2423. Three of five families appear to be unlinked to this new locus on chromosome 7, thus establishing further heterogeneity within the LGMD1 diagnostic classification.  相似文献   

4.
Pendred syndrome is an autosomal recessive disorder characterized by the association between sensorineural hearing loss and thyroid swelling or goitre and is likely to be the most common form of syndromic deafness. Within the thyroid gland of affected individuals, iodide is incompletely organified with variable effects upon thyroid hormone biosynthesis, whilst the molecular basis of the hearing loss is unknown. The PDS gene has been identified by positional cloning of chromosome 7q31, within the Pendred syndrome critical linkage interval and encodes for a putative ion transporter called pendrin. We have investigated a cohort of 56 kindreds, all with features suggestive of a diagnosis of Pendred syndrome. Molecular analysis of the PDS gene identified 47 of the 60 (78%) mutant alleles in 31 families (includes three homozygous consanguineous kindreds and one extended family segregating three mutant alleles). Moreover, four recurrent mutations accounted for 35 (74%) of PDS disease chromosomes detected and haplotype analysis would favour common founders rather than mutational hotspots within the PDS gene. Whilst these findings demonstrate molecular heterogeneity for PDS mutations associated with Pendred syndrome, this study would support the use of molecular analysis of the PDS gene in the assessment of families with congenital hearing loss.  相似文献   

5.
The syndrome of hypoparathyroidism associated with growth retardation, developmental delay, and dysmorphism (HRD) is a newly described, autosomal recessive, congenital disorder with severe, often fatal consequences. Since the syndrome is very rare, with all parents of affected individuals being consanguineous, it is presumed to be caused by homozygous inheritance of a single recessive mutation from a common ancestor. To localize the HRD gene, we performed a genomewide screen using DNA pooling and homozygosity mapping for apparently unlinked kindreds. Analysis of a panel of 359 highly polymorphic markers revealed linkage to D1S235. The maximum LOD score obtained was 4.11 at a recombination fraction of 0. Analysis of three additional markers-GGAA6F06, D1S2678, and D1S179-in a 2-cM interval around D1S235 resulted in LOD scores >3. Analysis of additional chromosome 1 markers revealed evidence of genetic linkage disequilibrium and place the HRD locus within an approximately 1-cM interval defined by D1S1540 and D1S2678 on chromosome 1q42-43.  相似文献   

6.
Wolfram syndrome (DIDMOAD syndrome; MIM 222300) is an autosomal recessive neurodegenerative disorder characterized by juvenile-onset diabetes mellitus and bilateral optic atrophy. Previous linkage analysis of multiply affected families indicated that the gene for Wolfram syndrome is on chromosome 4p, and it produced no evidence for locus heterogeneity. We have investigated 12 U.K. families with Wolfram syndrome, and we report confirmation of linkage to chromosome 4p, with a maximum two-point LOD score of 4.6 with DRD5, assuming homogeneity, and of 5.1, assuming heterogeneity. Overlapping multipoint analysis using six markers at a time produced definite evidence for locus heterogeneity: the maximum multipoint LOD score under homogeneity was <2, whereas when heterogeneity was allowed for an admixture a LOD of 6.2 was obtained in the interval between D4S432 and D4S431, with the peak close to the marker D4S3023. One family with an atypical phenotype was definitely unlinked to the region. Haplotype inspection of the remaining 11 families, which appear linked to chromosome 4p and had typical phenotypes, revealed crossover events during meiosis, which also placed the gene in the interval D4S432 and D4S431. In these families no recombinants were detected with the marker D4S3023, which maps within the same interval.  相似文献   

7.
OBJECTIVE: To establish a genetic linkage between highly polymorphic microsatellite loci and the disease locus responsible for an autosomal recessive neurodegenerative syndrome that causes posterior column ataxia and retinitis pigmentosa. BACKGROUND: The authors reported previously a genetic syndrome that causes visual impairment, proprioceptive loss, sensory ataxia, and areflexia in affected individuals from a large, inbred family belonging to a sectarian population that has been genetically semi-isolated from mainstream society for several centuries. METHODS: To find the disease locus responsible for this condition, the authors performed a genome-wide search using genetic loci spaced at 10 to 20-cM intervals spanning human chromosomes (chr) 1-22. Pairwise linkage analysis, multipoint linkage analysis, and haplotype reconstruction were used to delineate the candidate region containing the disease gene. RESULTS: After testing 226 loci that covered the entire genome, the authors identified a maximum lod score of 8.94 at a recombination fraction of 0.00 for locus D1S2692. Additional analyses placed the disease gene, AXPC1, in an 8.3-cM interval flanked by markers D1S2692 and D1S414 on chr 1q31-q32. CONCLUSIONS: This study suggests that a single genetic mutation can cause selective degeneration of the posterior columns of the spinal cord and retina. Finding the gene responsible for this syndrome may increase our understanding of the molecular basis of diseases that affect sensory neurons.  相似文献   

8.
Thiamine-responsive megaloblastic anemia, also known as "TRMA" or "Rogers syndrome," is an early-onset autosomal recessive disorder defined by the occurrence of megaloblastic anemia, diabetes mellitus, and sensorineural deafness, responding in varying degrees to thiamine treatment. On the basis of a linkage analysis of affected families of Alaskan and of Italian origin, we found, using homozygosity mapping, that the TRMA-syndrome gene maps to a region on chromosome 1q23.2-23.3 (maximum LOD score of 3.7 for D1S1679). By use of additional consanguineous kindreds of Israeli-Arab origin, the putative disease-gene interval also has been confirmed and narrowed, suggesting genetic homogeneity. Linkage analysis generated the highest combined LOD-score value, 8.1 at a recombination fraction of 0, with marker D1S2799. Haplotype analysis and recombination events narrowed the TRMA locus to a 16-cM region between markers D1S194 and D1S2786. Several heterozygote parents had diabetes mellitus, deafness, or megaloblastic anemia, which raised the possibility that mutations at this locus predispose carriers in general to these manifestations. Characterization of the metabolic defect of TRMA may shed light on the role of thiamine deficiency in such common diseases.  相似文献   

9.
Pendred syndrome is an autosomal recessive disorder characterized by early childhood deafness and goiter. A century after its recognition as a syndrome by Vaughan Pendred, the disease gene ( PDS ) was mapped to chromosome 7q22-q31.1 and, recently, found to encode a putative sulfate transporter. We performed mutation analysis of the PDS gene in patients from 14 Pendred families originating from seven countries and identified all mutations. The mutations include three single base deletions, one splice site mutation and 10 missense mutations. One missense mutation (L236P) was found in a homozygous state in two consanguineous families and in a heterozygous state in five additional non-consanguineous families. Another missense mutation (T416P) was found in a homozygous state in one family and in a heterozygous state in four families. Pendred patients in three non-consanguineous families were shown to be compound heterozygotes for L236P and T416P. In total, one or both of these mutations were found in nine of the 14 families analyzed. The identification of two frequent PDS mutations will facilitate the molecular diagnosis of Pendred syndrome.  相似文献   

10.
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders that are clinically and genetically heterogeneous. We report here a genetic linkage study, with five chromosome 12q markers, of three Martinican families with ADCA type 1, for which the spinocerebellar ataxia 1 (SCA1) locus was excluded. Linkage to the SCA2 locus was demonstrated with a maximal lead score of 6.64 at theta = 0.00 with marker D12S354. Recombinational events observed by haplotype reconstruction demonstrated that the SCA2 locus is located in an approximately 7-cM interval flanked by D12S105 and D12S79. Using the z(max)-1 method, multipoint analysis further reduced the candidate interval for SCA2 to a region of 5 cM. Two families shared a common haplotype at loci spanning 7 cM, which suggests a founder effect, whereas a different haplotype segregated with the disease in the third family. Finally, a mean anticipation of 12+/-14 years was found in parent-child couples, with no parental sex effect, suggesting that the disease might be caused by an expanded and unstable triplet repeat.  相似文献   

11.
We report the results of linkage analysis in a large American family of Czech descent with dominantly inherited "pure" essential tremor (ET) and genetic anticipation. Genetic loci on chromosome 2p22-p25 establish linkage to this region with a maximum LOD score (Zmax) = 5.92 for the locus, D2S272. Obligate recombinant events place the ETM gene in a 15-cM candidate interval between the genetic loci D2S168 and D2S224. Repeat expansion detection analysis suggests that expanded CAG trinucleotide sequences are associated with ET. These findings will facilitate the search for an ETM gene and may further our understanding of the human motor system.  相似文献   

12.
We have studied a four-generation family with features of Weyers acrofacial dysostosis, in which the proband has a more severe phenotype, resembling Ellis-van Creveld syndrome. Weyers acrofacial dysostosis is an autosomal dominant condition with dental anomalies, nail dystrophy, postaxial polydactyly, and mild short stature. Ellis-van Creveld syndrome is a similar condition, with autosomal recessive inheritance and the additional features of disproportionate dwarfism, thoracic dysplasia, and congenital heart disease. Linkage and haplotype analysis determined that the disease locus in this pedigree resides on chromosome 4p16, distal to the genetic marker D4S3007 and within a 17-cM region flanking the genetic locus D4S2366. This region includes the Ellis-van Creveld syndrome locus, which previously was reported to map within a 3-cM region between genetic markers D4S2957 and D4S827. Either the genes for the condition in our family and for Ellis-van Creveld syndrome are near one another or these two conditions are allelic with mutations in the same gene. These data also raise the possibility that Weyers acrofacial dysostosis is the heterozygous expression of a mutation that, in homozygous form, causes the autosomal recessive disorder Ellis-van Creveld syndrome.  相似文献   

13.
The loss of genetic material on chromosome 10q is frequent in different tumors and particularly in malignant gliomas. We analyzed 90 of these tumors and found loss of heterozygosity (LOH) in >90% of the informative loci in glioblastoma multiforme (GBM). Initial studies restricted the common LOH region to 10q24-qter. Subsequently, the study of a pediatric GBM suggested D10S221 and D10S209, respectively, as centromeric and telomeric markers of a 4-cM LOH region. It is interesting to note that, in one subset of cells from this tumor, locus D10S209 seems involved in the allelic imbalance of a larger region, with D10S214 as telomeric marker. This 17-cM region contains the D10S587-D10S216 interval of common deletion recently defined on another set of gliomas.  相似文献   

14.
OBJECTIVE: To delineate the clinical features in patients with the autosomal recessive camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP) and to determine the location of the involved gene. METHODS: Eight affected individuals (ages 2-15 years) with CACP from 4 consanguineous kindreds were clinically evaluated. Four patients are newly described and 4 have been reported previously. Findings were compared with those in 21 other previously reported cases. DNA obtained from the 8 affected patients and their available siblings and parents was used in a genome-wide search for linkage. RESULTS: Congenital camptodactyly and childhood-onset noninflammatory arthropathy were present in all affected patients. Seven patients developed bilateral coxa vara deformity, and 1 developed coxa magna with cystic erosions. Two of the patients also had symptoms or signs of pericarditis. A genome-wide search for linkage identified homozygosity for a series of genetic markers on human chromosome 1q in all affected patients. The marker D1S191 yielded a maximum logarithm of the odds ratio (LOD score) of 3.3 at theta = 0. The CACP gene lies within a 1.9-cM candidate interval defined by the markers D1S2107 and D1S222. CONCLUSION: The principal features of the CACP syndrome are congenital or early-onset camptodactyly and childhood-onset noninflammatory arthropathy. Coxa vara deformity or other dysplasia associated with progressive hip disease may develop over time. Clinical pericarditis may also occur. A locus responsible for causing CACP syndrome is assigned to a 1.9-cM interval on human chromosome 1q25-31 by homozygosity mapping. This now facilitates the identification of the responsible gene and permits testing for locus homogeneity in other CACP kindreds.  相似文献   

15.
Nonsyndromic hearing loss (NSHL) is the most common type of hearing impairment in the elderly. Environmental and hereditary factors play an etiologic role, although the relative contribution of each is unknown. To date, 39 NSHL genes have been localized. Twelve produce autosomal dominant hearing loss, most frequently postlingual in onset and progressive in nature. We have ascertained a large, multigenerational family in which a gene for autosomal dominant NSHL is segregating. Affected individuals experience progressive hearing loss beginning in the 2d-4th decades, eventually making the use of amplification mandatory. A novel locus, DFNA13, was identified on chromosome 6p; the disease gene maps to a 4-cM interval flanked by D6S1663 and D6S1691, with a maximum two-point LOD score of 6.409 at D6S299.  相似文献   

16.
Childhood absence epilepsy (CAE), a common form of idiopathic generalized epilepsy, accounts for 5%-15% of childhood epilepsies. To map the chromosomal locus of persisting CAE, we studied the clinical and electroencephalographic traits of 78 members of a five-generation family from Bombay, India. The model-free affected-pedigree member method was used during initial screening with chromosome 6p, 8q, and 1p microsatellites, and only individuals with absence seizures and/or electroencephalogram 3-4-Hz spike- and multispike-slow wave complexes were considered to be affected. Significant P values of .00000-.02 for several markers on 8q were obtained. Two-point linkage analysis, assuming autosomal dominant inheritance with 50% penetrance, yielded a maximum LOD score (Zmax) of 3.6 for D8S502. No other locus in the genome achieved a significant Zmax. For five smaller multiplex families, summed Zmax was 2.4 for D8S537 and 1.7 for D8S1761. Haplotypes composed of the same 8q24 microsatellites segregated with affected members of the large family from India and with all five smaller families. Recombinations positioned the CAE gene in a 3.2-cM interval.  相似文献   

17.
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder characterized by microcephaly, a birdlike face, growth retardation, immunodeficiency, lack of secondary sex characteristics in females, and increased incidence of lymphoid cancers. NBS cells display a phenotype similar to that of cells from ataxia-telangiectasia patients, including chromosomal instability, radiation sensitivity, and aberrant cell-cycle-checkpoint control following exposure to ionizing radiation. A recent study reported genetic linkage of NBS to human chromosome 8q21, with strong linkage disequilibrium detected at marker D8S1811 in eastern European NBS families. We collected a geographically diverse group of NBS families and tested them for linkage, using an expanded panel of markers at 8q21. In this article, we report linkage of NBS to 8q21 in 6/7 of these families, with a maximum LOD score of 3.58. Significant linkage disequilibrium was detected for 8/13 markers tested in the 8q21 region, including D8S1811. In order to further localize the gene for NBS, we generated a radiation-hybrid map of markers at 8q21 and constructed haplotypes based on this map. Examination of disease haplotypes segregating in 11 NBS pedigrees revealed recombination events that place the NBS gene between D8S1757 and D8S270. A common founder haplotype was present on 15/18 disease chromosomes from 9/11 NBS families. Inferred (ancestral) recombination events involving this common haplotype suggest that NBS can be localized further, to an interval flanked by markers D8S273 and D8S88.  相似文献   

18.
Cerebral palsy has an incidence of approximately 1/500 births, although this varies between different ethnic groups. Genetic forms of the disease account for approximately 1%-2% of cases in most countries but contribute a larger proportion in populations with extensive inbreeding. We have clinically characterized consanguineous families with multiple children affected by symmetrical spastic cerebral palsy, to locate recessive genes responsible for this condition. The eight families studied were identified from databases of patients in different regions of the United Kingdom. After ascertainment and clinical assessment, we performed a genomewide search for linkage, using 290 polymorphic DNA markers. In three families, a region of homozygosity at chromosome 2q24-q25 was identified between the markers D2S124 and D2S148. The largest family gave a maximum LOD score of 3.0, by multipoint analysis (HOMOZ). The maximum combined multipoint LOD score for the three families was 5.75. The minimum region of homozygosity is approximately 5 cM between the markers D2S124 and D2S2284. We have shown that a proportion of autosomal recessive symmetrical spastic cerebral palsy maps to chromosome 2q24-25. The identification of genes involved in the etiology of cerebral palsy may lead to improved management of this clinically intractable condition.  相似文献   

19.
Calcium homeostasis by the kidneys and parathyroids is mediated by the calcium-sensing receptor (CaSR), which is located on 3q21-q24 and belongs to family C of the superfamily of G-protein coupled receptors that includes those for metabotropic glutamate, certain pheromones, and gamma-amino butyric acid (GABA-B). Inactivating CaSR mutations result in familial benign hypercalcemia (FBH), or familial hypocalciuric hypercalcemia (FHH), whereas activating mutations result in hypocalcemic hypercalciuria. However, not all FBH patients have CaSR mutations, which, together with the mapping of another FBH locus to 19p13.3, suggests that additional CaSRs or second messengers may be involved. These may be identified by positional cloning, and we therefore performed a genomewide search, using chromosome-specific sets of microsatellite polymorphisms, in an Oklahoma family with an FBH variant (FBHOk), for which linkage to 3q and 19p had been excluded. Linkage was established between FBHOk and eight chromosome 19q13 loci, with the highest LOD score, 6.67 (recombination fraction.00), obtained with D19S606. Recombinants further mapped FBHOk to a <12-cM interval flanked by D19S908 and D19S866. The calmodulin III gene is located within this interval, and DNA sequence analysis of the coding region, the 5' UTR, and part of the promoter region in an individual affected with FBHOk did not detect any abnormalities, thereby indicating that this gene is unlikely to be implicated in the etiology of FBHOk. This mapping of FBHOk to chromosome 19q13 will facilitate the identification of another CaSR or a mediator of calcium homeostasis.  相似文献   

20.
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease with variable expression and incomplete penetrance, characterized by mucocutaneous pigmentation and hamartomatous polyposis. Patients with PJS have increased frequency of gastrointestinal and extraintestinal malignancies (ovaries, testes, and breast). In order to map the locus (or loci) associated with PJS, we performed a genomewide linkage analysis, using DNA polymorphisms in six families (two from Spain, two from India, one from the United States, and one from Portugal) comprising a total of 93 individuals, including 39 affected and 48 unaffected individuals and 6 individuals with unknown status. During this study, localization of a PJS gene to 19p13.3 (around marker D19S886) had been reported elsewhere. For our families, marker D19S886 yielded a maximum LOD score of 4.74 at a recombination fraction (theta) of .045; multipoint linkage analysis resulted in a LOD score of 7.51 for the interval between D19S886 and 19 pter. However, markers on 19q13.4 also showed significant evidence for linkage. For example, D19S880 resulted in a maximum LOD score of 3.8 at theta = .13. Most of this positive linkage was contributed by a single family, PJS07. These results confirm the mapping of a common PJS locus on 19p13.3 but also suggest the existence, in a minority of families, of a potential second PJS locus, on 19q13.4. Positional cloning and characterization of the PJS mutations will clarify the genetics of the syndrome and the implication of the gene(s) in the predisposition to neoplasias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号