首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 566 毫秒
1.
沙德尚  孔力  孙晓 《太阳能学报》2004,25(2):227-231
燃料电池电压输出范围比较宽,电压比较低。针对该特点本文设计了DC/DC和DC/AC两级变换的功率调节系统(PCS)。其中DC/DC将燃料电池输出的低压直流电高频变换成高压直流电,变换器为电压单环控制。DC/AC逆变器采用基于电压电流瞬时值反馈的双闭环控制,将高压直流电逆变为正弦交流电。分析了整个功率调节系统的工作原理及逆变器电路参数对稳定性的影响。0.5KVA佯饥实验结果表明整个系统具有电压输入范围宽、变换效率高、输出波形THD小等优点。为开发高效、高功率密度的燃料电池电源系统提供技术基础。  相似文献   

2.
Fuel cell power conditioners often require high step-up voltage gains to accommodate low input fuel cell voltages into high voltage busses. Traditional non-isolated DC-DC boost converters are unable to offer such as gains because of several parasitic elements and non-ideal behaviour of power semiconductors and driving circuits. Moreover, paralleled converters are also desirable to simplify power-up scaling and to reduce input/output current ripples. In this context, a very versatile non-isolated, high step-up voltage gain, interleaved boost converter is presented in this work. Steady-state analysis, simulation and evaluation of different converter structures are discussed in detail. Finally, a 500-W experimental prototype for Nexa Ballard 1.2 kW fuel cell specifications has been implemented and tested to verify the performance.  相似文献   

3.
The energy use of the world grows continuously and the development of a clean distributed power generation becomes environmentally important. Fuel cells are one such integral part of Renewable Energy Sources based clean energy supply; that they operate with hydrogen as fuel and water with heat as process waste. Due to the electrochemical reaction, fuel cell has the power quality of delivering low voltage with high current capability. Here an attempt is made to develop a power conditioner with a series of conversion to get a 220 V sinusoidal AC, 50 Hz single phase voltage of low distortion and fast dynamic regulation to cater load variations. A novel Polyphase Boost DC-to-DC switching converter based on parallel connection of 8 identical converters with current mode control is devised to have minimum reflected ripple current and voltage injected to fuel cell input. A full bridge converter with high frequency transformer isolation, step-up the DC voltage level from the low voltage fuel cell along with poly phase boost converter, deliver required DC to the PWM inverter, which generate AC utility power output. Recent trend of Ultra-capacitor based transient energy storage and retrieval system, to cater for the sluggish behavior of fuel cell, for load transients is incorporated. DSP and FPGA based digital real time controllers are used to realize the gating of MOSFETs and IGBTs used in the power conditioner. A 1 kW power conditioner is developed for a PAFC fuel cell system with 12 V DC nominal and their performance evaluations are satisfactory.  相似文献   

4.
Fuel cells are emerging as main power source for portable applications. These devices need power management circuit to connect varying output fuel cell voltage to desired regulated voltage load with high efficiency. Maintaining high efficiency of the converter over a wide loading range can improve stored fuel longevity. The purpose of this paper is to report a general review of most used topologies in fuel cell power conditioning applied to portable systems. Finally, a 100 W DC–DC converter for a particular fuel cell portable application will be presented. This converter was designed to fulfill several specifications of input and output voltage.  相似文献   

5.
This paper introduces a technique based on linear quadratic regulator (LQR) to control the output voltage at the load point versus load variation from a standalone proton exchange membrane (PEM) fuel cell power plant (FCPP) for a group housing use. The controller modifies the optimal gains k i by minimizing a cost function, and the phase angle of the AC output voltage to control the active and reactive power output from an FCPP to match the terminal load. The control actions are based on feedback signals from the terminal load, output voltage and fuel cell feedback current. The topology chosen for the simulation consists of a 45 kW proton exchange membrane fuel cell (PEMFC), boost type DC/DC converter, a three-phase DC/AC inverter followed by an LC filter. Simulation results show that the proposed control strategy operated at low commutation frequency (2 kHz) offers good performances versus load variations with low total harmonic distortions (THD), which is very useful for high power applications.  相似文献   

6.
This work focuses on the application of the high frequency DC–DC converters used in electric vehicles. Two converters are necessary. The first converter is interposed between the fuel cell and the DC–AC inverter. It is unidirectional. The second one is used as interface between the ultra-capacitor and the DC–AC inverter. It allows the bidirectional of the power transfer. Each converter is composed of two full bridges, LC resonant filter and two planar transformers. The use of high frequency transformer allows to minimize the size and weight of the converter, produce a higher voltage in secondary side from input voltage (fuel cell or super-capacitor) and isolate the full bridges. The control strategy of the converters is the phase shift. The converters have been designed, realised and controlled by an FPGA board. To demonstrate the converters feasibility, two converters are implemented and tested. The switching frequency of two converters is 20 kHz. The first converter has a 24-V input and 200 V/1.2 kW output. But, the second converter has a 12.5-V input and 100 V/400 W output.  相似文献   

7.
A fuel cell powered system is regarded as a high current and low voltage source. To boost the output voltage of a fuel cell, a DC/DC converter is employed. Since these two systems show different dynamics, they need to be coordinated to meet the demand of a load. This paper proposes models for the two systems with associated controls, which take into account a PEM fuel cell stack with air supply and thermal systems, and a PWM DC/DC converter. The integrated simulation facilitates optimization of the power control strategy, and analyses of interrelated effects between the electric load and the temperature of cell components. In addition, the results show that the proposed power control can coordinate the two sources with improved dynamics and efficiency at a given dynamic load.  相似文献   

8.
Since the output voltage of the proton exchange membrane fuel cell (PEMFC) is relatively low and load-dependent, a high-performance fuel cell front-end converter is required to achieve boost and power regulation in PEMFC systems. In response, a novel family of high gain fuel cell front-end converters with low input current ripple is proposed. The proposed topologies can substantially improve the voltage gain through the expansion and combination of active switched-inductor networks and passive switched-capacitor units. The introduced interleaved parallel structure is convenient to limit the current ripple on the input side to prevent accelerated aging of fuel cells, which is another prominent advantage. Meanwhile, the converters can achieve the automatic current sharing between parallel inductors and the low voltage stress on active switches and diodes. In this paper, the fuel cell model and topology derivation of the high gain fuel cell front-end converters are first analyzed. Then, it further describes the operating mode and steady-state performance of converters under the inductor current continuous conduction mode. The comparison with other converters shows that this converter is suitable for connecting the PEMFC to the high voltage DC bus. Finally, a 200 W, 20/180 V converter prototype is implemented, and the simulation and experiment prove the theoretical correctness and validate the superior performances of the proposed converters.  相似文献   

9.
A new single-switch non-isolated dc–dc converter with high-voltage gain and reduced semiconductor voltage stress is proposed in this paper. The proposed topology is derived from the conventional boost converter integrated with self-lift Sepic converter for providing high voltage gain without extreme switch duty-cycle. The reduced voltage stress across the power switch enables the use of a lower voltage and RDS-ON MOSFET switch, which will further reduce the conduction losses. Moreover, the low voltage stress across the diodes allows the use of Schottky rectifiers for alleviating the reverse-recovery current problem, leading to a further reduction in the switching and conduction losses. Furthermore, the “near-zero” ripple current can be achieved at the input side of the converter which will help improve the fuel cell stack life cycle. The principle of operation, and theoretical are performed. Experimental results of a 100 W/240 Vdc output with 24 Vdc input voltage are provided to evaluate the performance of the proposed scheme.  相似文献   

10.
The realization of dc-dc converters performs a vital function in exploiting renewable energy sources such as solar photovoltaic (PV) and fuel cell applications. This paper demonstrates a single-switch unidirectional buck-boost dc-dc converter for continuous power flow control, excluding the hybrid switched-capacitor. The proposed converter utilizes a limited number of passive components, only four diodes and three inductors required, in addition to six capacitors. The converter can operate at a wide input voltage range with continues input current. The converter has experimented under real-time conditions with 660 W PV system. The obtained efficiency ranges from 93% to 98%. Furthermore, the converter has interfaced with 550 W fuel cell operated under different fuel pressure. The realized efficiency ranges from 91% to 97%. The maximum measured inductance current ripple is limited to under 0.70 A in both scenarios, whereas 0.16 V is the maximum output voltage ripple.  相似文献   

11.
In this paper, an integrated double boost SEPIC (IDBS) converter is proposed as a high step-up converter. The proposed converter utilizes a single controlled power switch and two inductors and is able to provide high voltage gain without extreme switch duty-cycle. The two inductors can be coupled into one core for reducing the input current ripple without affecting the basic DC characteristic of the converter. Moreover, the voltage stresses across all the semiconductors are less than half of the output voltage. The reduced voltage stress across the power switch enables the use of a lower voltage and RDS-ON MOSFET switch, which will further reduce the conduction losses. Whereas, the low voltage stress across the diodes allows the use of Schottky rectifiers for alleviating the reverse-recovery current problem, leading to a further reduction in the switching and conduction losses. A detailed circuit analysis is performed to derive the design equations. A design example for a 100-W/240 Vdc with 24 Vdc input voltage is provided. The feasibility of the converter is confirmed with results obtained from simulation and an experimental prototype.  相似文献   

12.
Renewable energy sources have been taken the place of the traditional energy sources and especially rapidly developments of photovoltaic (PV) technology and fuel cell (FC) technology have been put forward these renewable energy sources (RES) in all other RES. PV systems have been started to be used widely in domestic applications connected to electrical grid and grid connected PV power generating systems have become widespread all around the world. On the other hand, fuel cell power generating systems have been used to support the PV generating so hybrid generation systems consist of PV and fuel cell technology are investigated for power generating. In this study, a grid connected fuel cell and PV hybrid power generating system was developed with Matlab Simulink. 160 Wp solar module was developed based on solar module temperature and solar irradiation by using real data sheet of a commercial PV module and then by using these modules 800 Wp PV generator was obtained. Output current and voltage of PV system was used for input of DC/DC boost converter and its output was used for the input of the inverter. PV system was connected to the grid and designed 5 kW solid oxide fuel cell (SOFC) system was used for supporting the DC bus of the hybrid power generating system. All results obtained from the simulated hybrid power system were explained in the paper. Proposed model was designed as modular so designing and simulating grid connected SOFC and PV systems can be developed easily thanks to flexible design.  相似文献   

13.
In recent years, many researchers have proposed new DC/DC converters in order to meet the fuel cell requirements. The reliability of these DC/DC converters is crucial in order to guarantee the availability of fuel cell systems. In these converters, power switches ranked the most fragile components. In order to enhance the reliability of DC/DC converters, fuel cell systems have to include fault-tolerant topologies. Usually, dynamic redundancy is employed to make a fault-tolerant converter. Despite this kind of converter allows ensuring a continuity of service in case of faults, the use of dynamic redundancy gets back to increase the complexity of the converter. In order to cope with reliability expectations in DC/DC converters, floating interleaved boost converters seem to be the best solution. Indeed, they have much to offer for fuel cells and DC renewable energy sources (i.e. photovoltaic system), including reduced input current ripple and reliability in case of faults. Despite the offered benefits of this topology, operating degraded modes lead up to undesirable effects such as electrical overstress on components and input current ripple increasing. The aim of this paper is to carry out a thorough analysis of these undesirable effects and to propose remedial strategies to minimize them.  相似文献   

14.
In this paper, an interleaved soft-switched active-clamped L–L type current-fed half-bridge isolated dc–dc converter has been proposed. The L–L type active-clamped current-fed converter is able to maintain zero-voltage switching (ZVS) of all switches for the complete operating range of wide fuel cell stack voltage variation at full load down to light load conditions. Active-clamped circuit absorbs the turn-off voltage spike across the switches. Half-bridge topology maintains higher efficiency due to lower conduction losses. Soft-switching permits higher switching frequency operation, reducing the size, weight and cost of the magnetic components. Interleaving of the two isolated converters is done using parallel input series output approach and phase-shifted modulation is adopted. It reduces the input current ripple at the fuel cell input, which is required in a fuel cell system and also reduces the output voltage ripples. In addition, the size of the magnetic/passive components, current rating of the switches and voltage ratings of the rectifier diodes are reduced.  相似文献   

15.
The low frequency current ripple in grid-connected fuel cell systems is generated from dc–ac inverter operation, which generates 60 Hz fundamental component, and gives harmful effects on fuel cell stack itself, such as making cathode surface responses slower, causing an increase of more than 10% in the fuel consumption, creating oxygen starvation, causing a reduction in the operating lifetime, and incurring a nuisance tripping such as overload situation. With these reasons, low frequency current ripple makes fuel cell system unstable and lifetime of fuel cell stack itself short. This paper presents a fast and robust control algorithm to eliminate low frequency current ripple in grid-connected fuel cell systems. Compared with the conventional methods, in the proposed control algorithm, dc link voltage controller is shifted from dc–dc converter to dc–ac inverter, resulting that dc–ac inverter handles dc link voltage control and output current control simultaneously with help of power balancing technique. The results indicate that the proposed algorithm can not only completely eliminate current ripple but also significantly reduce the overshoot or undershoot during transient states without any extra hardware. The validity of the proposed algorithm is verified by computer simulations and also by experiments with a 1 kW laboratory prototype.  相似文献   

16.
The foreseeable shortages in conventional sources of electric power has increased the emphasis on the research and development of alternate sources of energy. In order to make a noteworthy impact, the alternate sources of energy need to be utility interactive by means of a power electronic interface (a DC to AC converter). The inherent assumption in the control of DC to AC converters is, that the DC voltage available at the input of the converter is constant. However, when the input is an unregulated DC source such as a battery, fuel cell, photovoltaic cells or any other form of alternate source, maintenance of the constant DC voltage at the input of the converter is often impossible. A modified inverter switching technique is proposed for the interface with the utility grid such that the AC output of the inverter becomes immune to fluctuations in the unregulated input DC obtained from alternate energy sources  相似文献   

17.
A numerical model is developed from a stationary proton exchange membrane fuel cell (PEMFC) system comprising a PEMFC, a DC‐DC buck converter, an auxiliary power supply (a lithium battery and supercapacitor), and a DC‐AC inverter. The transient and steady‐state performance of the PEMFC system is investigated by means of Matlab/Simulink simulations. It is shown that a good agreement exists between the simulated polarization curve of the PEMFC and the experimental results presented in the literature. In addition, it is shown that the DC‐DC buck converter provides an effective means of stabilizing the output voltage of the PEMFC. Finally, the results confirm the effectiveness of the auxiliary power source in enabling the PEMFC to satisfy the peak load demand. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper covers the design of a DC–DC power converter aimed for hydrogen production from photovoltaic sources. Power conditioning for such application is usually driven by different constraints: high step-down conversion ratio is required if the input voltage of such equipment has to be compatible with photovoltaic sources that are connected to grid-connected inverters; galvanic isolation; high efficiency and low mass. Taking into account those factors, this work proposes a push–pull DC/DC converter for power levels up to 5 kW. The operation and features of the converter are presented and analyzed. Design guidelines are suggested and experimental validation is also given.  相似文献   

19.
In this work a state and transfer function model of the set made up of a proton exchange membrane (PEM) fuel cell and a DC/DC converter is developed. The set is modelled as a plant controlled by the converter duty cycle. In addition to allow setting the plant operating point at any point of its characteristic curve (two interesting points are maximum efficiency and maximum power points), this approach also allows the connection of the fuel cell to other energy generation and storage devices, given that, as they all usually share a single DC bus, a thorough control of the interconnected devices is required. First, the state and transfer function models of the fuel cell and the converter are obtained. Then, both models are related in order to achieve the fuel cell+DC/DC converter set (plant) model. The results of the theoretical developments are validated by simulation on a real fuel cell model.  相似文献   

20.
This paper covers the design and the implementation of the control strategy of a DC/DC converter aimed for hydrogen production from photovoltaic sources. This control scheme provides tight control of the injected current to the electrolyser and, if required, maximum power point tracking of the photovoltaic source, by means of two independent external control loops. The two outer loops create a reference signal for an inner control loop, which adjusts the duty cycle of the DC/DC converter and sets the output inductor current to the desired value. Embedded design, which includes analog and digital electronics, has been considered for the practical implementation. Converter and control loop modelling, simulation and experimental validation are discussed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号