首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Phosphoric acid-doped sulfonated poly(tetra phenyl phthalazine ether sulfone) (PA-SPTPPES) copolymers were successfully synthesized by the 4,4′-dihydroxydiphenylsulfone with 1,2-bis(4-fluorobenzoyl)-3,4,5,6-tetraphenylbenzene (BFBTPB) and 4,4′-difluorodiphenylsulfone in sulfolane. Poly(tetra phenyl phthalazine ether sulfone)s (PTPPESs) were prepared via an intramolecular ring-closure reaction of dibenzoylbenzene of precursor and hydrazine. The sulfonated poly(tetra phenyl phthalazine ether sulfone) (SPTPPES) membranes were obtained by sulfonation under concentrated sulfuric acid, and followed phosphoric acid-doped by immersion in phosphoric acid. Different contents of doped and sulfonated unit of PA-SPTPPES (10, 15, 20 mol% of BFBTPB) were studied by FT-IR, 1H NMR spectroscopy, and thermo gravimetric analysis (TGA). The ion exchange capacity (IEC) and proton conductivity of SPTPPESs and PA-SPTPPESs were evaluated with increase of degree of sulfonation and doping level. The PA-SPTPPESs membranes exhibit proton conductivities (80 °C, relative humidity 30%) of 41.3 ∼ 74.1 mS/cm and the maximum power densities of PA-SPTPPES 10, 15, and 20 were about 294, 350, and 403 mW/cm2.  相似文献   

2.
Structure design is the primary strategy to acquire suitable ionomers for preparing proton exchange membranes (PEMs) with excellent performance. A series of comb-shaped sulfonated fluorinated poly(aryl ether sulfone) (SPFAES) membranes are prepared from sulfonated fluorinated poly(aryl ether sulfone) polymer (SPFAE) and sulfonated poly(aryl ether sulfone) oligomer (SPAES-Oligomer). Chemical structures of the comb-shaped membranes are verified by 1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectra. The comb-shaped SPFAES membranes display more continuous hydrophilic domains for ion transfer, because the abundant cations and flexible side-chains structure possess higher mobility and hydrophilicity, which show significantly improved proton conductivity, physicochemical stability, mechanical property compared to the linear SPFAE membranes. In a H2/O2 single-cell test, the SPFAES-1.77 membrane achieves a higher power density of 699.3 mW/cm2 in comparison with Nafion® 112 (618.0 mW/cm2) at 80 °C and 100% relative humidity. This work offers a promising example for the synthesis of highly branched polymers with flexible comb-shaped side chains for high-performance PEMs.  相似文献   

3.
The organic-inorganic composite membranes are prepared by inserting poly(styrene sulfonate)-grafted silica particles into a polymer matrix of sulfonated poly(arylene ether sulfone) copolymer. The first step consisted in using atom transfer radical polymerization method to prepare surface-modified silica particles grafted with sodium 4-styrenesulfonate, referred to as PSS-g-SiO2. Ion exchange capacities up to 2.4 meq/g are obtained for these modified silica particles. In a second step, a sulfonated poly(arylene ether sulfone) copolymer is synthesized via nucleophilic step polymerization of sulfonated 4,4′-dichlorodiphenyl sulfone, 4,4′-dichlorodiphenyl sulfone and phenolphthalin monomers in the presence of potassium carbonate. The copolymer is blended with various amounts of silica particles to form organic-inorganic composite membranes. Esterification reaction is carried out between silica particles and the sulfonated polymer chains by thermal treatment in the presence of sodium hypophosphite, which catalyzed the esterification reaction. The water uptake, proton conductivity, and thermal decomposition temperature of the membranes are measured. All composite membranes show better water uptake and proton conductivity than the unmodified membrane. Moreover, the membranes are tested in a commercial single cell at 80 °C and 120 °C in humidified H2/air under different relative humidity conditions. The composite membrane containing 10%(w/w) of PSS-g-SiO2 particles, which have ester bonds between polymer chains and silica particles, showed the best performance of 690 mA cm−2 at 0.6 V, 120 °C and 30 %RH, even higher than the commercial Nafion® 112 membrane.  相似文献   

4.
A novel series of sulfonated poly(arylene ether sulfone)s (SPAESs) containing fluorophenyl pendant groups are successfully developed and their membranes are evaluated in low-temperature proton exchange membrane fuel cells. The SPAESs are synthesized from 4,4′-dichlorodiphenylsulfone (DCDPS), 3,3′-disulfonate-4,4′-dichlorodiphenylsulfone (SDCDPS), and (4-fluorophenyl)hydroquinone by nucleophilic aromatic substitution polycondensation. The structure and properties of SPAESs membranes are characterized using 1H-NMR, EA, FT-IR, TG, and DSC, along with the proton conductivity, water uptake, ion exchange capacity and chemical stability. A maximum proton conductivity of 0.35 S cm−1 at 90 °C is achieved for SPAES membrane with 50% SDCDPS. These SPAES membranes display high dimensional stability and oxidative durability, due to the introduction of fluorophenyl pendant groups on the polymer backbone. The fuel cell performances of the MEAs with SPAES reaches an initial power density of 120.6 mW cm−2 at 30 °C, and greatly increases to 224.3 mW cm−2 at 80 °C using H2 and O2 gases.  相似文献   

5.
A series of crosslinkable sulfonated poly(arylene ether sulfone)s (SPAESs) were synthesized by copolymerization of 4,4′-biphenol with 2,6-difluorobenzil and 3,3′-disulfonated-4,4′-difluorodiphenyl sulfone disodium salt. Quinoxaline-based crosslinked SPAESs were prepared via the cyclocondensation reaction of benzil moieties in polymer chain with 3,3′-diaminobenzidine to form quinoxaline groups acting as covalent and acid-base ionic crosslinking. The uncrosslinked and crosslinked SPAES membranes showed high mechanical properties and the isotropic membrane swelling, while the later became insoluble in tested polar aprotic solvents. The crosslinking significantly improved the membrane performance, i.e., the crosslinked membranes had the lower membrane dimensional change, lower methanol permeability and higher oxidative stability than the corresponding precursor membranes, with keeping the reasonably high proton conductivity. The crosslinked membrane (CS1-2) with measured ion exchange capacity of 1.53 mequiv. g−1 showed a reasonably high proton conductivity of 107 mS/cm with water uptake of 48 wt.% at 80 °C, and exhibited a low methanol permeability of 2.3 × 10−7 cm2 s−1 for 32 wt.% methanol solution at 25 °C. The crosslinked SPAES membranes have potential for PEFC and DMFCs.  相似文献   

6.
Sulfonated poly(tetra phenyl ether ketone sulfone)s SPTPEKS were successfully synthesized for proton exchange membrane. Poly(tetra phenyl ether ketone sulfone)s PTPEKS were prepared by the 4,4′-dihydroxydiphenylsulfone with 1,2-bis(4-fluorobenzoyl)-3,4,5,6-tetraphenylbenzene (BFBTPB) and 4,4′-difluorodiphenylsulfone, respectively, at 210 °C using potassium carbonate in sulfolane. PTPEKS were followed by sulfonation using chlorosulfonic acid and concentrated sulfuric acid at two stage reactions. Different contents of sulfonated unit of SPTPEKS (17, 20, 23 mol% of BFBTPB) were studied by FT-IR, 1H NMR spectroscopy, and thermo gravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water. The ion exchange capacity (IEC) and proton conductivity of SPTPEKS were evaluated with increase of degree of sulfonation. The water uptake of synthesized SPTPEKS membranes exhibit 25–61% compared with 28% of Nafion 211®. The SPTPEKS membranes exhibit proton conductivities (25 °C) of 11.7–25.3 × 10−3 S/cm compared with 33.7 × 10−3 S/cm of Nafion 211®.  相似文献   

7.
Sulfonated amine-poly(ether sulfone)s (S-APES)s were prepared by nitration, reduction and sulfonation of poly(ether sulfone) (ultrason®-S6010). Poly(ether sulfone) was reacted with ammonium nitrate and trifluoroacetic anhydride to produce the nitrated poly(ether sulfone), and was followed by reduction using tin(II)chloride and sodium iodide as reducing agents to give the amino-poly(ether sulfone). The S-APES was obtained by reaction of 1,3-propanesultone and the amino-poly(ether sulfone) (NH2-PES) with sodium methoxide. The different degrees of nitration and reduction of poly(ether sulfone) were successfully synthesized by an optimized process. The reduction of nitro group to amino was done quantitatively, and this controlled the contents of the sulfonic acid group. The films were converted from salt to acid forms with dilute hydrochloric acid. Different contents of sulfonated unit of the S-APES were studied by FT-IR, 1H NMR spectroscopy, differential scanning calorimetry (DSC), and thermo gravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. The ion exchange capacity (IEC), a measure of proton conductivity, was evaluated. The S-APES membranes exhibit conductivities (25 °C) from 1.05 × 10−3 to 4.83 × 10−3 S/cm, water swell from 30.25 to 66.50%, IEC from 0.38 to 0.82 meq/g, and methanol diffusion coefficients from 3.10 × 10−7 to 4.82 × 10−7 cm2/S at 25 °C.  相似文献   

8.
Phosphoric acid-doped sulfonated poly(tetra phenyl isoquinoline ether sulfone)s (PA-SPTPIESs) were successfully synthesized for high temperature proton exchange membrane. Poly(tetra phenyl ether ketone sulfone)s (PTPEKS) were prepared from 1,2-bis(4-fluorobenzoyl)-3,4,5,6-tetraphenyl benzene (BFBTPB) and bis(4-fluorohenyl) sulfone with bis(4-hydroxyphenyl) sulfone. The synthesis of the poly(tetra phenyl isoquinoline ether sulfone)s (PTPIESs), was carried out via an intramolecular ring-closure reaction of dibenzoylbenzene of PTPEKS with benzylamine. The sulfonated poly(tetra phenyl isoquinoline ether sulfone)s (SPTPIESs) were obtained by following sulfonation with concentrated sulfuric acid and doped by phosphoric acid. Different contents of sulfonated unit on PTPIESs (8, 12, 16 mol% of BFBTPB) and PA-SPTPIESs were studied by FT-IR, 1H NMR spectroscopy, and thermogravimetric analysis (TGA). Strong acid–base interaction effect between poly benzisoquinoline (PBI) and sulfonic acid groups formed ionic crosslinking network between polymer chains. The ion exchange capacity (IEC) and proton conductivity of PA-SPTPIESs were evaluated with degree of sulfonation and doping of phosphoric acid.  相似文献   

9.
A series of sulfonated poly(arylene ether sulfone) with photocrosslinkable moieties is successfully synthesized by direct copolymerization of 3,3′-disulfonated 4,4′-difluorodiphenyl sulfone (SDFDPS) and 4,4′-difluorodiphenyl sulfone (DFDPS) with 4,4′-biphenol (BP) and 1,3-bis-(4-hydroxyphenyl) propenone (BHPP). The content of crosslinkable moieties in the polymer repeat unit is controlled from 0 to 10 mol% by changing the monomer feed ratio of BHPP to BP. The polymer membranes can be crosslinked by irradiating UV with a wavelength of 365 nm. From FT-IR analysis, it can be identified that UV crosslinking mainly occurs due to the combination reaction of radicals that occurs in conjunction with the breaking of the carbon–carbon double bonds (–CH = CH-) of the chalcone moieties in the backbone. Consequently, a new bond is created to form cyclobutane. The crosslinked membranes show less water uptake, a lower level of methanol permeability, and good thermal and mechanical properties compared to pristine (non-crosslinked) membranes while maintaining a reasonable level of proton conductivity. Finally, the fuel cell performance of the crosslinked membranes is comparable to that of the Nafion 115 membrane, demonstrating that these membranes are promising candidates for use as polymer electrolyte membranes in DMFCs.  相似文献   

10.
Sulfonated poly(arylene ether sulfone) copolymer is synthesized via nucleophilic step polymerization of sulfonated 4,4′-dichlorodiphenyl sulfone, 4,4′-dichlorodiphenyl sulfone and phenolphthalin monomers in the presence of potassium carbonate. The copolymer is blended with various amounts of silica particles to form organic–inorganic composite membranes. Esterification reaction is carried out between silica particles and the sulfonated polymer chains by thermal treatment in the presence of sodium hypophosphite, which catalyzed the esterification reaction. The composition and incorporation of the sulfonated repeat unit are confirmed by 1H NMR. The water uptake, proton conductivity, and thermal decomposition temperature of the membranes are measured. The silica content in the polymer matrix and the effect of esterification are evaluated. All composite membranes show better water uptake and proton conductivity than the unmodified membrane. Moreover, the membranes are tested in a commercial single cell at 80 °C and 120 °C in humidified H2/air under different relative humidity conditions. The composite membrane containing 10% (w/w) silica shows the best performance among the prepared membranes especially under high temperature and low humidity conditions.  相似文献   

11.
The cross-linkable sulfonated ploy(arylene ether)s derived from 3,3′-diallyl-4,4′-dihydroxybiphenyl, 9,9′-bis(3,5-dimethyl-4-hydroxypheyl)fluorene (DMHPF), 4,4′-difluorobenzophenone (DFBP) and sulfonated 4,4′-diflourobenzophenone (SDFBP) were synthesized over a wide range of DFBP/SDFBP molar ratios. The resulting sulfonated poly(arylene ether)s with high inherent viscosity (0.87–1.46 dl g−1) are soluble in polar organic solvents and can form flexible and transparent membranes by casting from their solution. The cross-linking reaction was carried out using a thermal activated radical cross-linking agent (TARC) at 100 °C. The comprehensive properties of the virgin and the cross-linked membranes were characterized and compared accordingly. The results showed that the cross-linked membranes had better mechanical, oxidative and dimensional stabilities together with high proton conductivity (5.41 × 10−2 S cm−1) at 80 °C under 100% relative humidity when compared with previously synthesized and similar membranes. These improvements were raised from the cross-linking structure and the fabrication procedure of the membranes.  相似文献   

12.
A series of sulfonated poly(arylene ether ketone sulfone)s polymer having a degree of sulfonation of 80% and a carboxyl group in the side chain (C-SPAEKS) were prepared by polycondensation. The 4-aminopyridine grafted sulfonated poly(arylene ether ketone sulfone)s polymer membranes (SPPs) were prepared by amidation reaction with the carboxyl group to immobilize 4-aminopyridine on the side chain. The 1H NMR results and Fourier transform infrared of SPP membranes demonstrated the successful grafting of the 4-aminopyridine. Proton conductivity, water absorption, swelling ratio, and thermal stability of different proportions of SPP membranes were investigated under the different conditions. With the increase of pyridine grafting content, the methanol permeability coefficient of the membrane decreased significantly from 8.17 × 10−7 cm2s−1 to 8.92 × 10−8 cm2s−1 at 25 °C. And, the proton conductivity and relative selectivity of the membrane were positively correlated with the grafted pyridine content. Among them, the SPP-4 membrane exhibited the highest proton conductivity of 0.088 Scm−1 at 100 °C. The relative selectivity increased from 4.73 × 104 S scm−3 to 9.84 × 104 S scm−3.  相似文献   

13.
The cross-linkable sulfonated ploy(arylene ether)s derived from 3,3′-diallyl-4,4′-dihydroxybiphenyl, bisphthalazinone, 4,4′-difluorobenzophenone (DFBP) and sulfonated 4,4′-diflourobenzophenone (SDFBP) were synthesized over a wide range of DFBP/SDFBP molar ratios. The resulting sulfonated poly(arylene ether)s with high inherent viscosity (1.02–1.29 dL g−1) are soluble in polar organic solvents and can form flexible and transparent membranes by casting from their solution. Cross-linking reaction was carried out using the thermal activated radical cross-linking agent (TARC) at 140 °C. The comprehensive properties of the virgin and the cross-linked membranes were compared accordingly. The results showed that the cross-linked membranes revealed the better mechanical, oxidative and dimensional stabilities together with high proton conductivity (9.675 × 10−3 S cm−1) at 25 °C under 100% relative humidity.  相似文献   

14.
We report an effective and facile approach to enhance the dimensional and chemical stability of sulfonated poly(ether ether ketone) (SPEEK) type proton exchange membranes through simple polymer blending for fuel cell applications, using commercial available materials. The polymeric blends with sulfonated poly(aryl ether sulfone)s (SPAES) were simply fabricated by a three-component system, which contained SPEEK (10–50 wt%, 1.83 mmol/g), and SPAES-40 (1.72 mmol/g)/SPAES-50 (2.04 mmol/g) at 1:1 in weight. The SPAES-40 was selected for mechanical and dimensional stability reinforcing, while SPAES-50 for the good polymer compatibility. The obtained SPEEK/SPAES blend membranes showed depressed water uptake, better dimensional and oxidative stability, together with higher proton conductivity beyond 70 °C than the pristine SPEEK membrane. The apparent improvements in membrane properties were associated with the homogeneous dispersion of SPEEK and both SPAES copolymers inside the membranes as well as the rearrangements of the polymeric chains. The SPEEK content should be properly controlled in the range of 10–40% (B10 to B40). In a H2/O2 fuel cell test, B30 showed a maximum power density of 700 mW/cm2, which was 1.6 times as high as that of B40 at 80 °C under 100% RH. The further cross-linking treatment produced more ductile and enduring blend membranes, indicating an appreciable prospective for fuel cell applications.  相似文献   

15.
Commercially available poly(ether ether sulfone), PEES, was directly sulfonated using concentrated sulfuric acid at low temperatures by minimizing degradation during sulfonation. The sulfonation reaction was performed in the temperature range of 5–25 °C. Sulfonated polymers were characterized by FTIR, 1H NMR spectroscopy and ion exchange capacity (IEC) measurements. Degradation during sulfonation was investigated by measuring intrinsic viscosity, glass transition temperature and thermal decomposition temperature of sulfonated polymers. Sulfonated PEES, SPEES, membranes were prepared by solvent casting method and characterized in terms of IEC, proton conductivity and water uptake. The effect of sulfonation conditions on chemical stability of membranes was also investigated via Fenton test. Optimum sulfonation condition was determined to be 10 °C with conc. H2SO4 based on the characteristics of sulfonated polymers and also the chemical stability of their membranes. SPEES membranes exhibited proton conductivity up to 185.8 mS cm−1 which is higher than that of Nafion 117 (133.3 mS cm−1) measured at 80 °C and relative humidity 100%.  相似文献   

16.
Innovation of novel low cost proton conductive materials with super acidity has been the ever-increasing thirst for PEMFCs. Sulfonimide groups have the strongest gas-phase super-acidity with excellent thermal and chemical stability. Therefore, a series of partially fluorinated sulfonimide functionalized poly(arylene ether sulfone)s (SIPAES-xx) were successfully synthesized by chemical modification of sulfonated polyarylethersulfone (SPAES). The SPAESs were synthesized first by the direct polymerization of 4,4′ -dichlorodiphenylsulfone (DCDPS), 3,3′-disulfonate-4,4′-dichlorodiphenylsulfone (SDCDPS), and bisphenol. Thereafter, all arylsulfonic acid groups were converted into more acidic sulfonimide acid groups using partial fluorinated fluorosulfonyl imide monomer. The effect of the conversion of arylsulfonic acid function into sulfonimide was evaluated through thermal and chemical analysis. 1H-NMR, FTIR, TGA, FE SEM, and AFM were used to illustrate the structure, thermal and chemical properties of (SIPAES-xx) membranes. The membranes showed IEC values of 0.78–1.41 mequiv./g with 6.7–40.6% water uptake for 20–40% ionic groups. The synthesized SIPAES-40 membranes showed comparable proton conductivity to Nafion® 117 at same conditions. Nevertheless, the aromatic sulfonimide remained stable up to 370 °C. Furthermore, the presence of fluorine within the sulfonimide polymer provided high dimensional stability and oxidative durability by protecting the polymer chain from oxidizing radical species. Therefore, the synthesized SIPAES-xx membranes have the potential features as a proton exchange membrane (PEM) materials in the fuel cell.  相似文献   

17.
A type of sulfonated covalent organic framework nanosheets (TpPa-SO3H) was synthesized via interfacial polymerization and incorporated into sulfonated poly (ether ether ketone) (SPEEK) matrix to prepare proton exchange membranes (PEMs). The densely and orderly arranged sulfonic acid groups in the rigid skeleton of the TpPa-SO3H nanosheets, together with their high-aspect-ratio and well-defined porous structure provide proton-conducting highways in the membrane. The doping of TpPa-SO3H nanosheets led to an increased ion exchange capacity up to 2.34 mmol g?1 but a 2-folds reduced swelling ratio, remarkably mitigating the trade-off between high IEC and excessive swelling ratio. Based on the high IEC and orderly arranged proton-conducting sites, the SPEEK/TpPa–SO3H–5 membrane exhibited the maximum proton conductivity of 0.346 S cm?1 at 80 °C, 1.91-folds higher than the pristine SPEEK membrane. The mechanical strength of the composite membrane was also improved by 2.05-folds–74.5 MPa. The single H2/O2 fuel cell using the SPEEK/TpPa–SO3H–5 membrane presented favorable performance with an open voltage of 1.01 V and a power density of 86.54 mW cm?2.  相似文献   

18.
The development of hydrocarbon polymer electrolyte membranes with high proton conductivities and good stability as alternatives to perfluorosulfonic acid membranes is an ongoing research effort. A facile and effective thermal crosslinking method was carried out on the blended sulfonated poly (ether ether ketone)/poly (aryl ether sulfone) (SPEEK/SPAES) system. Two SPEEK polymers with ion exchange capacities (IECs) of 1.6 and 2.0 mmol g?1 and one SPAES polymer (2.0 mmol g?1) were selected to create different blends. The effect of thermal crosslinking on the fundamental properties of the membranes, especially their physicochemical stability and electrochemical performance, were investigated in detail. The homogeneous and flexible thermally-crosslinked SPEEK/SPAES membranes displayed excellent mechanical toughness (27–46 Mpa), suitable water uptake (<60%), high dimensional stability (swelling ratio < 15%) and large proton conductivity (>120 mS cm?1) at 80 °C. The thermal crosslinking membranes also show significantly enhanced hydrolytic (<2.5%) and oxidative stability (<2%). Fuel cell with t-SPEEK/SPAES (1:2:2) membrane achieves a power density of 665 mW cm?2 at 80 °C.  相似文献   

19.
Hydrophilic–hydrophobic alternating poly(arylene ether ketone sulfone) multiblock copolymers, 6FK-BPSH100, were prepared by the synthesis and coupling of partly fluorinated hydrophobic poly(arylene ether ketone)oligomers (6FK) and disulfonated hydrophilic poly(arylene ether sulfone) telechelic oligomers (BPSH100), containing 3,3′-disulfonated-4,4′dichlorodiphenylsulfone (SDCDPS) as a source of ionomeric moieties. By precisely controlling the molecular weight and composition of the telechelic oligomers, a series of multiblock copolymers were prepared varying in block length and ion exchange capacity (IEC) for a comparative study. The resulting copolymers afforded tough and ductile membranes by solution casting from DMAc. Membrane properties of these copolymers were characterized with regard tointrinsic viscosity, thermal stabilities, morphology, water uptake, and proton conductivity. The results were compared to those of Nafion® and random copolymer BPSH35. The nanophase separated morphology developed in the membranes was illustrated by transmission electron microscopy (TEM), which account for enhanced proton conductivity at reduced relative humidity (RH). More importantly, film processing studies have demonstrated that a major advance in proton conductivity versus RH behavior and greatly reduced water uptake could be achieved via precise annealing experiments.  相似文献   

20.
A role of metallophthalocyanine (MPc) as an anti-oxidizing agent of polymer membrane and an accelerating agent of proton conductivity was discussed. The poly(ether sulfone)s bearing MPc (Ni, Co and Fe), PMPc were prepared by two-step reaction from phenolphthalein and fumaronitrile and followed reaction with metal (II) chloride (Ni, Co and Fe) and 1,2-dicyanobenzene in quinoline. The sulfonated polymer was synthesized by condensation polymerization using 1,2-bis(4-hydroxyphenyl)-1,2-diphenyl ethylene, bis(4-fluorophenyl) sulfone and followed by sulfonation reaction with concentrated sulfuric acid. A series of hybrid membranes (H–Ni, H–Co and H–Fe) were prepared from a mixture of the sulfonated copolymer and PMPcs in dimethylacetamide (DMAc). The structural properties of the synthesized polymers were studied by 1H-NMR spectroscopy and FT-IR. The membrane properties were investigated by measurements of ion exchange capacity (IEC), water uptake, and proton conductivity, chemical degradation test, and atomic force microscopy (AFM) analysis. The cell performance of the membranes was compared with those of normal sulfonated poly(ether sulfone)s and Nafion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号