首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The passive operation of a direct methanol fuel cell with neat methanol requires the water that is produced at the cathode to diffuse through the membrane to the anode to compensate the methanol oxidation reaction (MOR). Hence, the anode performance of this type of fuel cell can be limited by the water transport rate from the cathode to the anode. In this work we theoretically show that the water transport from the cathode to the anode depends primarily on the design of the cathode gas diffusion layer (GDL). We investigate experimentally the effects of the design parameters of the cathode GDL, including the PTFE (polytetrafluoroethylene) content in the backing layer (BL), and the carbon loading and the PTFE content in the microporous layer (MPL) on the water transport and the performance of the passive DMFC with the help of a reference electrode. The results indicate that on one hand, these parameters can be adjusted to decrease the water concentration loss of the anode performance, but on the other hand, they can also cause an increase in the oxygen concentration loss of the cathode performance. Hence, an optimal balance in minimizing the both concentration losses is the key to maximize the cell performance.  相似文献   

2.
A mathematical model is developed to simulate the fundamental transport phenomena in a passive direct methanol fuel cell (DMFC) operating with neat methanol. The neat methanol operation is realized by using a ‘pervaporation’ membrane that allows the methanol concentration from the neat methanol in the fuel reservoir to be declined to an appropriate level in the anode catalyst layer (CL). The water required by the methanol oxidation reaction on the anode is passively obtained by diffusion from the cathode through the membrane. The numerical results indicate that the methanol delivery rate from the fuel reservoir to the anode CL is predominately controlled by the pervaporation process. It is also found that under the neat methanol operating condition, water distribution across the membrane electrode assembly is greatly influenced by the membrane thickness, the cathode design, the operating temperature, and the ambient relative humidity.  相似文献   

3.
It is desirable to operate a direct methanol fuel cell (DMFC) with neat methanol to maximize the specific energy of the DMFC system, and hence increasing its runtime. A way to achieve the neat-methanol operation is to passively transport the water produced at the cathode through the membrane to the anode to facilitate the methanol oxidation reaction (MOR). To achieve a performance of the MOR similar to that under the conventional diluted methanol operation, both the water transport rate and the local water concentration in the anode catalyst layer (CL) are required to be sufficiently high. In this work, a thin layer consisting of nanosized SiO2 particles and Nafion ionomer (referred to as a water retention layer hereafter) is coated onto each side of the membrane. Taking advantage of the hygroscopic nature of SiO2, the cathode water retention layer can help maintain the water produced from the cathode at a higher concentration level to enhance the water transport to the anode, while the anode retention layer can retain the water that is transported from the cathode. As a result, a higher water transport rate and a higher water concentration at the anode CL can be achieved. The formed membrane electrode assembly (MEA) with the added water retention layers is tested in a passive DMFC and the results show that this MEA design yields a much higher power density than the MEA without water retention layers does.  相似文献   

4.
We show analytically that the water-crossover flux through the membrane used for direct methanol fuel cells (DMFCs) can be in situ determined by measuring the water flow rate at the exit of the cathode flow field. This measurement method enables investigating the effects of various design and geometric parameters as well as operating conditions, such as properties of cathode gas diffusion layer (GDL), membrane thickness, cell current density, cell temperature, methanol solution concentration, oxygen flow rate, etc., on water crossover through the membrane in situ in a DMFC. Water crossover through the membrane is generally due to electro-osmotic drag, diffusion and back convection. The experimental data showed that diffusion dominated the total water-crossover flux at low current densities due to the high water concentration difference across the membrane. With the increase in current density, the water flux by diffusion decreased, but the flux by back convection increased. The corresponding net water-transport coefficient was also found to decrease with current density. The experimental results also showed that the use of a hydrophobic cathode GDL with a hydrophobic MPL could substantially reduce water crossover through the membrane, and thereby significantly increasing the limiting current as the result of the improved oxygen transport. It was found that the cell operating temperature, oxygen flow rate and membrane thickness all had significant influences on water crossover, but the influence of methanol concentration was negligibly small.  相似文献   

5.
Water management is an important challenge in portable direct methanol fuel cells. Reducing the water and methanol loss from the anode to the cathode enables the use of highly concentrated methanol solutions to achieve enhanced performances. In this work, the results of a simulation study using a previous developed model for DMFCs are presented. Particular attention is devoted to the water distribution across the cell. The influence of different parameters (such as the cathode relative humidity (RH), the methanol concentration and the membrane, catalyst layer and diffusion media thicknesses) over the water transport and on the cell performance is studied. The analytical solutions of the net water transport coefficient, for different values of the cathode relative humidity are successfully compared with recent published experimental data putting in evidence that humidified cathodes contribute to a decrease on the water crossover. As a result of the modelling results, a tailored MEA build-up with the common available commercial materials is proposed to achieve low methanol and water crossover and high power density, operating at relatively high methanol concentrations. A thick anode catalyst layer to promote methanol oxidation, a thin anode gas diffusion layer as methanol carrier to the catalyst layer and a thin polymer membrane to lower the water crossover coefficient between the anode and cathode are suggested.  相似文献   

6.
A two-dimensional two-phase non-isothermal mass transport model is developed to numerically investigate the behavior of water transport through the membrane electrode assembly (MEA) of a direct methanol fuel cell. The model enables the visualization of the distribution of the liquid saturation through the MEA and the analysis of the distinct effects of the three water transport mechanisms: diffusion, convection and electro-osmotic drag, on the water-crossover flux through the membrane. A parametric study is then performed to examine the effects of the structure design of the gas diffusion layer (GDL) on water crossover. The results indicate that the flow-channel rib coverage on the GDL surface and the deformation of the GDL can cause an uneven distribution of the water-crossover flux along the in-plane direction, especially at higher current densities. It is also found that both the contact angle and the permeability of the cathode GDL can significantly influence the water-crossover flux. The water-crossover flux can be reduced by improving the hydrophobicity of the cathode GDL.  相似文献   

7.
In determining the liquid water distribution in the anode (or the cathode) diffusion medium of a liquid-feed direct methanol fuel cell (DMFC) with a conventional two-phase mass transport model, a current-independent liquid saturation boundary condition at the interface between the anode flow channel and diffusion layer (DL) (or at the interface between the cathode flow channel and cathode DL) needs to be assumed. The numerical results resulting from such a boundary condition cannot realistically reveal the liquid distribution in the porous region, as the liquid saturation at the interface between the flow channel and DL varies with current density. In this work, we propose a simple theoretical approach that is combined with the in situ measured water-crossover flux in the DMFC to determine the liquid saturation in the anode catalyst layer (CL) and in the cathode CL. The determined liquid saturation in the anode CL (or in the cathode CL) can then be used as a known boundary condition to determine the water distribution in the anode DL (or in the cathode DL) with a two-phase mass transport model. The numerical results show that the water distribution becomes much more realistic than those predicted with the assumed boundary condition at the interface between the flow channel and DL.  相似文献   

8.
Passive direct methanol fuel cells (DMFCs) are under development for use in portable applications because of their enhanced energy density in comparison with other fuel cell types. The most significant obstacles for DMFC development are methanol and water crossover because methanol diffuses through the membrane generating heat but no power. The presence of a large amount of water floods the cathode and reduces cell performance. The present study was carried out to understand the performance of passive DMFCs, focused on the water crossover through the membrane from the anode to the cathode side. The water crossover behaviour in passive DMFCs was studied analytically with the results of a developed model for passive DMFCs. The model was validated with an in‐house designed passive DMFC. The effect of methanol concentration, membrane thickness, gas diffusion layer material and thickness and catalyst loading on fuel cell performance and water crossover is presented. Water crossover was lowered with reduction on methanol concentration, reduction of membrane thickness and increase on anode diffusion layer thickness and anode and cathode catalyst layer thickness. It was found that these conditions also reduced methanol crossover rate. A membrane electrode assembly was proposed to achieve low methanol and water crossover and high power density, operating at high methanol concentrations. The results presented provide very useful and actual information for future passive DMFC systems using high concentration or pure methanol. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Mass balance research in direct methanol fuel cells (DMFCs) provides a more practical method in characterizing the mass transport phenomena in a membrane electrode assembly (MEA). This method can be used to measure methanol utilization efficiency, water transport coefficient (WTC), and methanol to electricity conversion rate of a MEA in DMFCs. First, the vital design parameters of a MEA are recognized for achieving high methanol utilization efficiency with increased power density. In particular, the structural adjustment of anode diffusion layer by adding microporous layer (MPL) is a very effective way to decrease WTC with reduced methanol crossover due to the mass transfer limitation in the anode. On the other hand, the cathode MPL in the MEA design can contribute in decreasing methanol crossover. The change of structure of cathode diffusion layer is also found to be a very effective way in improving power density. In contrast, the WTC of DMFC MEAs remains virtually constant in the range of 3.4 and 3.6 irrespective of the change of the cathode GDL. The influence of operating condition on the methanol utilization efficiency, WTC, and methanol to electricity conversion rate is also presented and it is found that these mass balance properties are strongly affected by temperature, current density, methanol concentration, and the stoichiometry of fuel and air.  相似文献   

10.
An algebraic model of the membrane electrode assembly of the direct methanol fuel cell is developed, which considers the simultaneous liquid water and methanol crossover effects, and the associated electrochemical reactions. The respective anodic and cathodic polarization curves can be predicted using this model. Methanol concentration profile and flux are correlated explicitly with the operating conditions and water transport rate. The cathode mixed potential effect induced by the methanol crossover is included and the subsequent cell voltage loss is identified. Water crossover is influenced by the capillary pressure equilibrium and hydrophobic property within the cathode gas diffusion layer. The model can be used to evaluate the cell performance at various working parameters such as membrane thickness, methanol feed concentration, and hydrophobicity of the cathode gas diffuser.  相似文献   

11.
A design of experiments (DOEs) coupled with a mathematical model was used to quantify the factors affecting methanol crossover in a direct methanol fuel cell (DMFC). The design of experiments examined the effects of temperature, cathode stoichiometry, anode methanol flow rate, clamping force, anode catalyst loading, cathode catalyst loading (CCL), and membrane thickness as a function of current and it also considered the interaction between any two of these factors. The analysis showed that significant factors affecting methanol crossover were temperature, anode catalyst layer thickness, and methanol concentration. The analysis also showed how these variables influence the total methanol crossover in different ways due to the effects on diffusion of methanol through the membrane, electroosmotic drag, and reaction rate of methanol at the anode and cathode. For example, as expected analysis showed that diffusion was significantly affected by the anode and cathode interfacial concentration, by the thickness of the anode catalyst layer and membrane, and by the diffusion coefficient in the membrane. Less obvious was the decrease in methanol crossover at low cathode flow rates were due to the formation of a methanol film at the membrane/cathode catalyst layer interface. The relative proportions of diffusion and electroosmotic drag in the membrane changed significantly with the cell current of the cell.  相似文献   

12.
The regulation of mass transport through anode diffusion layer is one of the major issue of direct methanol fuel cell. In fact it is critical to maintain an adequate methanol concentration in the anode electrode such that both the rate of methanol crossover and the mass transport loss can be minimized. In the present work the effect of anode micro-porous layer on system operation is investigated both experimentally and theoretically. The developed 2D two-phase isothermal model is validated with respect to three different typologies of measure at the same time, increasing results reliability. Model simulations highlight that anode micro-porous layer can cause an inversion of water diffusion flux through the membrane and enhances methanol gas diffusion mechanism, reducing methanol crossover. Finally the developed model is used as a tool to design an optimized anode diffusion layer.  相似文献   

13.
14.
In this work, a one-dimensional, isothermal two-phase mass transport model is developed to investigate the water transport through the membrane electrode assembly (MEA) for liquid-feed direct methanol fuel cells (DMFCs). The liquid (methanol–water solution) and gas (carbon dioxide gas, methanol vapor and water vapor) two-phase mass transport in the porous anode and cathode is formulated based on classical multiphase flow theory in porous media. In the anode and cathode catalyst layers, the simultaneous three-phase (liquid and vapor in pores as well as dissolved phase in the electrolyte) water transport is considered and the phase exchange of water is modeled with finite-rate interfacial exchanges between different phases. This model enables quantification of the water flux corresponding to each of the three water transport mechanisms through the membrane for DMFCs, such as diffusion, electro-osmotic drag, and convection. Hence, with this model, the effects of MEA design parameters on water crossover and cell performance under various operating conditions can be numerically investigated.  相似文献   

15.
A two-dimensional two-phase mass transport model has been developed to predict methanol and water crossover in a semi-passive direct methanol fuel cell with an air-breathing cathode. The mass transport in the catalyst layer and the discontinuity in liquid saturation at the interface between the diffusion layer and catalyst layer are particularly considered. The modeling results agree well with the experimental data of a home-assembled cell. Further studies on the typical two-phase flow and mass transport distributions including species, pressure and liquid saturation in the membrane electrode assembly are investigated. Finally, the methanol crossover flux, the net water transport coefficient, the water crossover flux, and the total water flux at the cathode as well as their contributors are predicted with the present model. The numerical results indicate that diffusion predominates the methanol crossover at low current densities, while electro-osmosis is the dominator at high current densities. The total water flux at the cathode is originated primarily from the water generated by the oxidation reaction of the permeated methanol at low current densities, while the water crossover flux is the main source of the total water flux at high current densities.  相似文献   

16.
Water management is an important issue for alkaline anion exchange membrane fuel cell (AAEMFC) due to its significant role in the energy conversion processes. In this study, a numerical model is developed to investigate the water transport in AAEMFC anode. The gas and liquid transport characteristics in the gas diffusion layer (GDL) and catalyst layer (CL) with different designs and under various operating conditions are discussed. The results show that the current density affects the liquid water distribution in anode most significantly, and the temperature is the second considerable factor. The stoichiometry ratio of the supplied reactant has insignificant effect on the liquid water transport in anode. The change of liquid water amount in anode with cathode relative humidity follows a similar trend with anode inlet relative humidity. Some numerical results are also explained with published experimental and modeling data with reasonable agreement.  相似文献   

17.
Liquid water formation and transport were investigated by direct experimental visualization in an operational transparent single-serpentine PEM fuel cell. We examined the effectiveness of various gas diffusion layer (GDL) materials in removing water away from the cathode and through the flow field over a range of operating conditions. Complete polarization curves as well as time evolution studies after step changes in current draw were obtained with simultaneous liquid water visualization within the transparent cell. The level of cathode flow field flooding, under the same operating conditions and cell current, was recognized as a criterion for the water removal capacity of the GDL materials. When compared at the same current density (i.e. water production rate), higher amount of liquid water in the cathode channel indicated that water had been efficiently removed from the catalyst layer.

Visualization of the anode channel was used to investigate the influence of the microporous layer (MPL) on water transport. No liquid water was observed in the anode flow field unless cathode GDLs had an MPL. MPL on the cathode side creates a pressure barrier for water produced at the catalyst layer. Water is pushed across the membrane to the anode side, resulting in anode flow field flooding close to the H2 exit.  相似文献   


18.
A two-phase mass-transport model is employed to investigate the water transport behaviour through the membrane electrode assembly (MEA) of a liquid-feed direct methanol fuel cell (DMFC). Emphasis is placed on examining the effects of each constituent component design of the MEA, including catalyst layers, microporous layers and membranes, on each of the three water crossover mechanisms: electro-osmotic drag, diffusion, and convection. The results show that lowering the diffusion flux of water or enhancing the convection flux of water (termed as the back-flow flux) through the membrane are both feasible to suppress water crossover in DMFCs. It is found that the reduction in the diffusion flux of water can be mainly achieved through optimum design of the anode porous layers, as the effect of the cathode porous region on water crossover by diffusion is relatively smaller. On the other hand, the design of the cathode porous layers plays a more important role in increasing the back-flow flux of water from the cathode to anode.  相似文献   

19.
The fuel transports in high-temperature proton-exchange membrane fuel cells have been numerically examined. Both convective and diffusive fuel transports are analyzed in detail. The former is often neglected in straight flow channel configurations while it has been reported to become important for serpentine or interdigitated flow channel configurations. By using a two-dimensional isothermal model, we have performed numerical simulations of a high-temperature proton-exchange membrane fuel cell with a straight flow channel configuration. The present results show that even in a straight flow channel configuration, the convection can play a significant role in fuel transports for the anode side. Examination of the flow field data reveals that the anode gas mixture is transported toward the catalyst layer (CL) whereas the gas mixture in the cathode channel moves away from the reaction site. It is also observed that as the flow moves downstream, the flow rate decreases in the anode channel but increases in the cathode channel. Species transport data are examined in detail by splitting the total flux of fuel transport into convective and diffusive flux components. For oxygen transport in the cathode gas diffusion layer (GDL), diffusion is dominant; in addition, the convective flux has a negative contribution to the total oxygen flux and is negligible compared to the diffusion flux. However, for hydrogen transport to the reaction site, both convection and diffusion are shown to be important processes in the anode GDL. At high cell voltages (i.e., low current densities), it is even observed that the convective contribution to the total hydrogen flux is larger than the diffusive one.  相似文献   

20.
Despite serious methanol crossover issues in Direct Methanol Fuel Cells (DMFCs), the use of high-concentration methanol fuel is highly demanded to improve the energy density of passive fuel DMFC systems for portable applications. In this paper, the effects of a hydrophobic anode micro-porous layer (MPL) and cathode air humidification are experimentally studied as a function of the methanol-feed concentration. It is found in polarization tests that the anode MPL dramatically influences cell performance, positively under high-concentration methanol-feed but negatively under low-concentration methanol-feed, which indicates that methanol transport in the anode is considerably altered by the presence of the anode MPL. In addition, the experimental data show that cathode air humidification has a beneficial effect on cell performance due to the enhanced backflow of water from the cathode to the anode and the subsequent dilution of the methanol concentration in the anode catalyst layer. Using an advanced membrane electrode assembly (MEA) with the anode MPL and cathode air humidification, we report that the maximum power density of 78 mW/cm2 is achieved at a methanol-feed concentration of 8 M and cell operating temperature of 60 °C. This paper illustrates that the anode MPL and cathode air humidification are key factors to successfully operate a DMFC with high-concentration methanol fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号