首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomass-based hydrogen production: A review and analysis   总被引:1,自引:0,他引:1  
In this study, various processes for conversion of biomass into hydrogen gas are comprehensively reviewed in terms of two main groups, namely (i) thermo-chemical processes (pyrolysis, conventional gasification, supercritical water gasification (SCWG)), and (ii) biological conversions (fermentative hydrogen production, photosynthesis, biological water gas shift reactions (BWGS)). Biomass-based hydrogen production systems are discussed in terms of their energetic and exergetic aspects. Literature studies and potential methods are then summarized for comparison purposes. In addition, a biomass gasification process via oxygen and steam in a downdraft gasifier is exergetically studied for performance assessment as a case study. The operating conditions and strategies are really important for better performance of the system for hydrogen production. A distinct range of temperatures and pressures is used, such as that the temperatures may vary from 480 to 1400 °C, while the pressures are in the range of 0.1–50 MPa in various thermo-chemical processes reviewed. For the operating conditions considered the data for steam biomass ratio (SBR) and equivalence ratio (ER) range from 0.6 to 10 and 0.1 to 0.4, respectively. In the study considered, steam is used as the gasifying agent with a product gas heating value of about 10–15 MJ/Nm3, compared to an air gasification of biomass process with 3–6 MJ/Nm3. The exergy efficiency value for the case study system is calculated to be 56.8%, while irreversibility and improvement potential rates are found to be 670.43 and 288.28 kW, respectively. Also, exergetic fuel and product rates of the downdraft gasifier are calculated as 1572.08 and 901.64 kW, while fuel depletion and productivity lack ratios are 43% and 74.3%, respectively.  相似文献   

2.
In recent years, biomass gasification has emerged as a viable option for decentralized power generation, especially in developing countries. Another potential use of producer gas from biomass gasification is in terms of feedstock for Fischer–Tropsch (FT) synthesis – a process for manufacture of synthetic gasoline and diesel. This paper reports optimization of biomass gasification process for these two applications. Using the non–stoichometric equilibrium model (SOLGASMIX), we have assessed the outcome of gasification process for different combinations of operating conditions. Four key parameters have been used for optimization, viz. biomass type (saw dust, rice husk, bamboo dust), air or equivalence ratio (AR = 0, 0.2, 0.4, 0.6, 0.8 and 1), temperature of gasification (T = 400, 500, 600, 700, 800, 900 and 1000 °C), and gasification medium (air, air–steam 10% mole/mole mixture, air–steam 30%mole/mole mixture). Performance of the gasification process has been assessed with four measures, viz. molar content of H2 and CO in the producer gas, H2/CO molar ratio, LHV of producer gas and overall efficiency of gasifier. The optimum sets of operating conditions for gasifier for FT synthesis are: AR = 0.2–0.4, Temp = 800–1000 °C, and gasification medium as air. The optimum sets of operating conditions for decentralized power generation are: AR = 0.3–0.4, Temp = 700–800 °C with gasification medium being air. The thermodynamic model and methodology presented in this work also presents a general framework, which could be extended for optimization of biomass gasification for any other application.  相似文献   

3.
《能源学会志》2020,93(1):99-111
This paper reports gasification of coal/biomass blends in a pilot scale (50 kWe) air-blown circulating fluidized bed gasifier. Yardsticks for gasification performance are net yield, LHV and composition and tar content of producer gas, cold gas efficiency (CGE) and carbon conversion efficiency (CCE). Net LHV decreased with increasing equivalence ratio (ER) whereas CCE and CGE increased. Max gas yield (1.91 Nm3/kg) and least tar yield (5.61 g/kg of dry fuel) was obtained for coal biomass composition of 60:40 wt% at 800 °C. Catalytic effect of alkali and alkaline earth metals in biomass enhanced char and tar conversion for coal/biomass blend of 60:40 wt% at ER = 0.29, with CGE and CCE of 44% and 84%, respectively. Gasification of 60:40 wt% coal/biomass blend with dolomite (10 wt%, in-bed) gave higher gas yield (2.11 Nm3/kg) and H2 content (12.63 vol%) of producer gas with reduced tar content (4.3 g/kg dry fuel).  相似文献   

4.
The main objective of this paper is to study the effect of design and operating parameters, mainly reactor geometry, equivalence ratio and biomass feeding rate, on the performance of the gasification process of biomass in a three air stage continuous fixed bed downdraft reactor. The gasification of corn straw was carried out in the gasifier under atmospheric pressure, using air as gasifying agent. The results demonstrated that due to the three stage of air supply, a high and uniform temperature was achieved in the oxidation and reduction zones for better tar cracking. The designing of both the air supply system and rotating grate avoided bridging and channeling. The gas composition and tar yield were affected by the parameters including equivalence ratio (ER) and biomass feeding rate. When biomass feeding rate was 7.5 kg/h and ER was 0.25–0.27, the product gas of the gasifier attained a good condition with lower heating value (LHV) about 5400 kJ/m3 and cold gas efficiency about 65%. An increase in equivalence ratio led to higher temperature which in turn resulted in lower tar yield which was only 0.52 g/Nm3 at ER = 0.32. Increasing biomass feeding rate led to higher biomass consumption rate and process temperature. However, excessively high feeding rate was unbeneficial for biomass gasification cracking and reforming reactions, which led to a decrease in H2 and CO concentrations and an increase in tar yield. When ER was 0.27, with an increase of biomass feeding rate from 5.8 kg/h to 9.3 kg/h, the lower heating value decreased from 5455.5 kJ/Nm3 to 5253.2 kJ/Nm3 and tar yield increased from 0.82 g/Nm3 to 2.78 g/Nm3.  相似文献   

5.
In the present study, an updraft biomass gasifier combined with a porous ceramic reformer was used to carry out the gasification reforming experiments for hydrogen-rich gas production. The effects of reactor temperature, equivalence ratio (ER) and gasifying agents on the gas yields were investigated. The results indicated that the ratio of CO/CO2 presented a clear increasing trend, and hydrogen yield increased from 33.17 to 44.26 g H2/kg biomass with the reactor temperature increase, The H2 concentration of production gas in oxygen gasification (oxygen as gasifying agent) was much higher than that in air gasification (air as gasifying agent). The ER values at maximum gas yield were found at ER = 0.22 in air gasification and at 0.05 in oxygen gasification, respectively. The hydrogen yields in air and oxygen gasification varied in the range of 25.05–29.58 and 25.68–51.29 g H2/kg biomass, respectively. Isothermal standard reduced time plots (RTPs) were employed to determine the best-fit kinetic model of large weight biomass air gasification isothermal thermogravimetric, and the relevant kinetic parameters corresponding to the air gasification were evaluated by isothermal kinetic analysis.  相似文献   

6.
Biomass gasification is one of the most promising technologies for converting biomass, a renewable source, into an easily transportable and usable fuel. Two woody biomass fuels Agrol and willow, and one agriculture residue Dry Distiller’s Grains with Solubles (DDGS), have been tested using an atmospheric pressure 100 kWth steam-oxygen blown circulating fluidized bed gasifier (CFB). The effects of operational conditions (e.g. steam to biomass ratio (SBR), oxygen to biomass stoichiometric ratio (ER) and gasification temperature) and bed materials on the composition distribution of the product gas and tar formation from these fuels were investigated. Experimental results show that there is a significant variation in the composition of the product gas produced. Among all the experiments, the averaged concentration of H2 obtained from Agrol, willow and DDGS over the temperature range from 800 to 820 °C was around 24 vol.%, 28 vol.% and 20 vol.% on a N2 free basis, respectively. A fairly high amount of H2S (∼2300 ppmv), COS (∼200 ppmv) and trace amounts of methyl mercaptan (<3 ppmv) on a N2 free basis were obtained from DDGS. Due to a relatively high content of K and Cl in DDGS fuel, an alkali-getter (e.g. kaolin) was added to avoid agglomeration during gasification. Higher temperatures and SBR values were favorable for increasing the mole ratio of H2 to CO and the tar decomposition but less advantageous for the formation of CH4. Meanwhile, higher temperatures and SBR values also led to higher gas yields, whereas a higher SBR caused a lower carbon conversion efficiency (CCE%), cold gas efficiency (CGE%) and heating values of the product gas due to a high steam content in the product gas. From solid phase adsorption (SPA) results, the total tar content obtained from Agrol was the highest at around 12.4 g/Nm3, followed by that from DDGS and willow gasification. The lowest tar content produced from Agrol, willow and DDGS using Austrian olivine (Bed 1) as bed materials was 5.7, 4.4 and 7.3 g/Nm3, values which were obtained at a temperature of 730, 820 and 730 °C, SBR of 1.52, 1.14 and 1.10, and ER of 0.36, 0.39 and 0.37, respectively.  相似文献   

7.
The present study developed a robust method for the modeling and optimization of variable air gasification parameters using the ASPEN Plus simulator and Response surface methodology (RSM). A comprehensive thermochemical equilibrium based model of downdraft gasifier was developed by minimizing Gibbs free energy. Model validation was done by comparing the simulated result with the experimental result of four different feedstocks from the literature and, a good agreement was attained. The Complete modeling of the air gasification process was segregated into four phases viz. biomass drying, biomass decomposition, biomass gasification, and producer gas filtration. Drying operation and yield distribution during pyrolysis were computed by incorporating FORTRAN sub-routine statement. Sensitivity analysis was performed to obtain syngas composition using Syzygium cumini biomass fuel and different gasification performances like gas yield (GY), cold gas efficiency (CGE), and higher heating value (HHV) using gasification temperature (600–900)0C and equivalence ratio (ER) (0.2–0.6). Furthermore, RSM has been employed for the multi-objective optimizations of the variable gasification parameter. Central composite design (CCD) is adopted. Two independent parameters viz. temperature and equivalence ratio have opted as decision parameters for estimating the optimum performance parameters i.e., hydrogen concentrations, CGE, and HHV. Regression models created from the ANOVA results are found to be highly accurate in predicting output response variables. The optimal values of H2, CGE, and HHV are found to be 0.1 (mole frac), 25.23%, and 3.96 MJ/kg respectively corresponding to optimized temperature at 887.879 °C and equivalence ratio 0.32 using response optimizer. The composite desirability observed was 0.59.  相似文献   

8.
Integration of metals into the biomass matrix has been found to be an alternate strategy to the conventional catalysts that are prone to deactivation. Different metals like Ni (0.98 mol/kg), Ru (0.76 mol/kg) and Fe (0.83 mol/kg) are separately impregnated into banana pseudo-stem to analyse their impact on H2 yields. In-situ gasification of metal impregnated biomass was conducted over sub/- and supercritical water range of 300–600 °C, with 1:10 biomass-to-water ratio for 60 min. X-ray diffraction and X-ray photoelectron spectroscopy of char generated at 300 and 600 °C confirm the transition of nanometals from M(n+) to M(0) during in-situ gasification. The reduction of metal oxides to nanometals enhanced the gas yields by providing more active sites. Maximum H2 yields of 11.1, 8.83 and 8.04 mmol/g was achieved for metal (Ni/Ru/Fe) impregnated banana pseudo-stem with the carbon gasification efficiency approaching 73.64, 64.21 and 62.65% respectively at 600 °C.  相似文献   

9.
This paper investigates the hydrogen-rich gas produced from biomass employing an updraft gasifier with a continuous biomass feeder. A porous ceramic reformer was combined with the gasifier for producer gas reforming. The effects of gasifier temperature, equivalence ratio (ER), steam to biomass ratio (S/B), and porous ceramic reforming on the gas characteristic parameters (composition, density, yield, low heating value, and residence time, etc.) were investigated. The results show that hydrogen-rich syngas with a high calorific value was produced, in the range of 8.10–13.40 MJ/Nm3, and the hydrogen yield was in the range of 45.05–135.40 g H2/kg biomass. A higher temperature favors the hydrogen production. With the increasing gasifier temperature varying from 800 to 950 °C, the hydrogen yield increased from 74.84 to 135.4 g H2/kg biomass. The low heating values first increased and then decreased with the increased ER from 0 to 0.3. A steam/biomass ratio of 2.05 was found as the optimum in the all steam gasification runs. The effect of porous ceramic reforming showed the water-soluble tar produced in the porous ceramic reforming, the conversion ratio of total organic carbon (TOC) contents is between 22.61% and 50.23%, and the hydrogen concentration obviously higher than that without porous ceramic reforming.  相似文献   

10.
In this paper, a conceptual hybrid biomass gasification system is developed to produce hydrogen and is exergoeconomically analyzed. The system is based on steam biomass gasification with the lumped solid oxide fuel cell (SOFC) and solid oxide electrolyser cell (SOEC) subsystem as the core components. The gasifier gasifies sawdust in a steam medium and operates at a temperature range of 1023-1423 K and near atmospheric pressure. The analysis is conducted for a specific steam biomass ratio of 0.8 kmol-steam/kmol-biomass. The gasification process is assumed to be self-thermally standing. The pressurized SOFC and SOEC are of planar types and operate at 1000 K and 1.2 bar. The system can produce multi-outputs, such as hydrogen (with a production capacity range of 21.8-25.2 kgh−1), power and heat. The internal hydrogen consumption in the lumped SOFC-SOEC subsystem increases from 8.1 to 8.6 kg/h. The SOFC performs an efficiency of 50.3% and utilizes the hydrogen produced from the steam that decomposes in the SOEC. The exergoeconomic analysis is performed to investigate and describe the exergetic and economic interactions between the system components through calculations of the unit exergy cost of the process streams. It obtains a set of cost balance equations belonging to an exergy flow with material streams to and from the components which constitute the system. Solving the developed cost balance equations provides the cost values of the exergy streams. For the gasification temperature range and the electricity cost of 0.1046 $/kWh considered, the unit exergy cost of hydrogen ranges from 0.258 to 0.211 $/kWh.  相似文献   

11.
The potential use of waste feedstocks (beached Posidonia Oceanica and Citrus peels) as fuels for energy recovery by gasification process in a BFB reactor was explored. A direct comparison between two biomasses with a traditional woody biomass (White pine) was carried out through TG-DTG analysis and gasification experiments at 1023 K, 1 bar, Equivalence Ratio equal to 0.3, and different Steam to Biomass inlet ratio (0.5–1.0).Thermo-gravimetric measurements highlighted that under air-steam gasification conditions Posidonia Oceanica and Citrus peels decompose at temperatures lower than White pine due to the presence of high ash content (9–14 wt%) in the produced bio-chars.An increasing of syngas and H2 yields, increasing Steam to Biomass inlet stream, was obtained for all the biomasses investigated.Posidonia Oceanica gasification showed the best yield rates for both syngas (2.64 Nm3/kgbiomass) and hydrogen (0.65 Nm3/kgbiomass) at Steam to Biomass equal to 1 wt/wt, however it exhibited lower Cold Gas Efficiency, Carbon Conversion Efficiency and Lower Heating Value syngas values than Citrus peels gasification in all range of Steam to Biomass ratio.  相似文献   

12.
Biomass steam gasification could be an attractive option for sustainable hydrogen production. Biomass, regarded as carbon neutral emitter, could be claimed as carbon negative emitter if carbon dioxide produced is captured and not allowed to emit to the environment during the process. Thus here an experimental study is carried out to find out the potential of hydrogen production from steam gasification of biomass in presence of sorbent CaO and effect of different operating parameters (steam to biomass ratio, temperature, and CaO/biomass ratio). Product gas with hydrogen concentration up to 54.43% is obtained at steam/biomass = 0.83, CaO/biomass = 2 and T = 670 °C. A drop of 93.33% in carbon dioxide concentration was found at CaO/biomass = 2 as compared to the gasification without CaO. Mathematical model based on Gibbs free energy minimization has been developed and is compared with the experimental results.  相似文献   

13.
《能源学会志》2020,93(4):1364-1372
The effect of biomass ash (rice straw ash (RSA) and cotton straw ash (CSA)) on the gasification reactivity and the evolution of physicochemical structure of petcoke char was investigated. The catalytic effect of CSA was significantly higher than that of RSA, and the catalytic effect of biomass ash was enhanced at lower gasification temperature and for higher blending ratio of biomass ash. The promoting effect of biomass ash was related to the increase of active AAEM content, the decrease of order degree of carbon structure and the development of surface structure in char gasification after biomass ash addition, which was more significant for CSA, at lower temperature and for higher blending ratio. Moreover, the shrinking core model was suitable for char gasification, and the additions of RSA and CSA reduced the activation energy of petcoke char gasification from 199.84 kJ mol−1 to 159.85 kJ mol−1 and 62.75 kJ mol−1, respectively.  相似文献   

14.
《能源学会志》2020,93(1):367-376
Plasma gasification technology has been demonstrated in recent studies as one of the most effective and environmentally friendly methods for solid waste treatment, which could be attractive for resource and energy recovery from kitchen waste. This study focuses on the effects of plasma gasification of kitchen waste replaced by 85% flour and 15% vegetables (Mass Fraction), including dimensionless operation parameters, ER (equivalence ratio), SFR (steam to feedstock ratio) and the gasification efficiency. The Horizontal plasma jet reactor is employed in the experiments. It is found that the influence of the equivalence ratio on syngas can be divided into positive and negative parts. And the steam injection is conducive to improving the yield of syngas, which mainly results from the heterogeneous water gas shift reaction. The optimal experimental parameters can be obtained at ER = 0.095 and SFR = 0.084. Besides, the maximum first and second efficiency of plasma gasification during these cases occurs in SFB = 0.084, accounting for 28.2% and 23.0%, respectively, which needs to study further to get improvement. The XRD and Raman spectra are applied to characterize the residual char, which may illustrate that the degree of graphitization is competing with a high yield of syngas during plasma gasification.  相似文献   

15.
This study investigates the enhancement of tar and trace gaseous pollutants (e.g. hydrogen sulfide (H2S) and hydrogen chloride (HCl) removal efficiency derived from rice straw gasification using an integrated hot-gas cleaning system. A bubbling fluidized bed gasifier was used by controlling the temperature at 800 °C and equivalence ratio (ER) ranging 0.2 to 0.4. The hot gas cleaning system was operated at 250 °C and designed to combine three types of absorbents including zeolite, calcined dolomite, and activated carbon. Tar, H2S, and HCl removal efficiency and enhanced hydrogen production were also discussed. The experimental results indicated that light fraction tar removal efficiency was higher than 90% and the overall tar removal efficiency was approximately 70%. In the case of ER 0.4, the syngas tar content was decreased from 71.88 g/Nm3 (without hot gas cleaning system) to 16.53 g/Nm3 (with hot gas cleaning system). The tar removal efficiency is nearly 77% using the hot gas cleaning system. The HCl and H2S removal efficiency ranged from 94% to 98% and from 80.7% to 83.92%, respectively. In the case of ER 0.3 and with the hot gas cleaning system, the HCl and H2S concentrations in cleaned syngas gas were less than 40 ppm and 100 ppm, respectively. Meanwhile, the hydrogen concentration of produced gas was also increased from 6.82% to 9.83% with hot gas cleaning system used. It means that the hot gas cleaning system can effectively remove HCl and H2S from produced gas in gasification, but also it has good potential for improving syngas quality and enhancing gas turbine application in the future.  相似文献   

16.
The effective implementation of biomass gasification has to overcome some difficulties such as the minimization of tars. On the other hand, with a proper design of experimental conditions, biomass gasification can be directed towards the production of hydrogen. The aim of the present study was to investigate the use of dolomite as catalyst to improve tar removal and hydrogen production by a two-stage steam gasification process, using olive cake as raw material. Fixing the olive cake gasification conditions on the first reactor (900 °C, steam flow rate of 190 mg min−1, O2 flow rate of 7.5 cm3 min−1), the cracking of tars was prompted by: a) steam gasification (steam flow rate in the range 40-190 mg min−1) at 1000 °C, b) catalytic gasification, using dolomite (5% wt.). It was found that increasing steam flow rate up to 110 mg min−1 involves an increase in hydrogen fraction due to the enhancement of water gas and water gas shift reactions. Also, the influence of dolomite was studied at 800 and 900 °C in a second reactor, finding better results at 800 °C, which gave an hydrogen fraction of 0.51.  相似文献   

17.
This study investigated the feasibility of gasification of rice straw using an Fe/Mn sludge as a catalyst. The Fe/Mn sludge contained iron and manganese compounds produced from a water purification plant. The gasification temperature and equivalent ratio (ER) was set at 900 °C and 0.30, respectively, with an amended catalyst ratio of 0%–15%. Experimental results indicated that the combustible gas production was increased from 0.61 m3/kg to 0.72 m3/kg with the Fe/Mn sludge addition. The lower heating value (LHV) of combustible gas and energy density (ED) were also increased with an increase in Fe/Mn sludge addition. The LHV and ED increased from 14.76 MJ/Nm3 to 15.82 MJ/Nm3 and from 1.37 MJ/MJ to 1.47 MJ/MJ, respectively. In conclusion, the catalytic gasification of rice straw was more efficient on an energy yield basis with the Fe/Mn sludge addition. The Fe/Mn sludge used in this research has been developed as a potential catalyst for the application of rice straw gasification.  相似文献   

18.
Continuous supercritical water gasification of isooctane, a model gasoline compound, is investigated using an updraft gasification system. A new reactor material, Haynes® 230® alloy, is employed to run gasification reactions at high temperature and pressure (763 ± 2 °C; 25 MPa). A large-volume reactor is used (170 mL) to enable the gasification to be run at a long residence time, up to 120 s. Various gasification experiments are performed by changing the residence time (60-120 s), the isooctane concentration (6.3-14.7 wt%), and the oxidant concentration (equivalent oxidant ratio 0-0.3). The total gas yield and the hydrogen gas yield increase with increasing residence time. At 106 s and an isooctane concentration of 6.3 wt%, a very high hydrogen gas yield of 12.4 mol/mol isooctane, which is 50% of the theoretical maximum hydrogen gas yield and 92% of the equilibrium hydrogen gas yield under the given conditions, is achieved. Under these conditions, supercritical water partial oxidation does not increase the hydrogen gas yield significantly. The produced gases are hydrogen (68 mol%), carbon dioxide (20 mol%), methane (9.8 mol%), carbon monoxide (1.3 mol%), and ethane (0.9 mol%). The carbon gasification efficiency is in the range 75-91%, depending on the oxidant concentration. A comparison of supercritical water gasification with other conventional methods, including steam reforming, autothermal reforming, and partial oxidation, is also presented.  相似文献   

19.
Biomass gasification is a promising technology to produce renewable syngas used for energy and chemical applications. However, biomass gasification has challenges of low process energy efficiency, low syngas production with low H2/CO ratio and the sintering of biomass ash which limit the deployment of the technology. This work investigated the influence of in-situ generated heat from CaO–CO2 on cellulose CO2 gasification using a fixed bed reactor, thermogravimetric analysis-Fourier transform infrared spectroscopy (TGA-FTIR) and differential scanning calorimetry (DSC). Experimental results indicate an approximate 20 °C temperature difference in the fix-bed reactor between cellulose CO2 gasification with the energy compensation of CaO carbonation (denoted auto-thermal biomass gasification) and conventional CO2 gasification of cellulose after the power of external furnaces were turned off. Around 5 times H2/CO molar ratio is obtained after switching off the power in the auto-thermal biomass gasification compared with conventional gasification. The gas yield enhances significantly from 0.29 g g?1 cellulose to 0.56 g g?1 cellulose when CaO/cellulose mass ratio increases from 0 to 5. Furthermore, the TGA-FTIR results demonstrate the feasibility of adopting energy compensation of CaO carbonation to reduce the gasification temperature. DSC analysis also proves that the released heat from the CaO–CO2 reaction reduces the required energy for cellulose degradation.  相似文献   

20.
Energy utilization from biomass resources has started to attract public attention as a method to reduce CO2 emissions. In this study, the characteristics of syngas production from biomass gasification were investigated in a downdraft gasifier that was combined with a small gas engine system for power generation. Syngas temperatures from the gasifier were maintained at a level of 700-1000 °C. When the air ratio for gasification was 0.3-0.35, the low heating value of syngas was 1100-1200 kcal Nm−3 and the cold gas efficiency 69-72%. Tar concentration in raw syngas was around 3.9-4.4 g Nm−3. Syngas combustion in the gas engine after purification showed that HC concentration was below 200 ppm, and NOx concentration was below 40 ppm in the exhaust gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号