首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Docetaxel, a widely used anticancer agent, has sparingly low aqueous solubility, thus Tween 80 and ethanol need to be added into its formulation, probably resulting in the toxic effects. In this study, we aimed to utilize submicron lipid emulsions as a carrier of docetaxel to avoid these potential toxic vehicles. Preformulation study was performed for rational emulsions formulation design, including drug solubility, distribution between oil and water, and degradation kinetics. Supersaturated submicron lipid emulsion of docetaxel was prepared by temperature elevation method. Soya oil and Miglyol 812 can incorporate docetaxel up to 1.0% (drug to lipid ratio) and were used as the oil phase of emulsions. The optimal formulation of docetaxel is composed of 10% oil phase, 1.2% soybean lecithin, 0.3% Pluoronic F68, and 0.4 or 0.8 mg/mL docetaxel, with particle size in the nanometer range, entrapment efficiency more than 90%, and is physicochemically stable at 4 and 25°C for 6 months. Animal studies showed that docetaxel emulsion has significantly higher area under the curve (AUC) and Cmax in rats compared to its micellar solution. The results suggested that the submicron lipid emulsion is a promising intravenous carrier for docetaxel in place of its present commercially available docetaxel micellar solution with potential toxic effects.  相似文献   

2.
The aim of this study performed at ambient temperature was first to determine the solubility of benzoyl peroxide in various solvents with a large range of polarity. All these solvents can be used in the dermatological field. Then, using the most suitable solvent, a new drug vehicle submicron oil-in-water emulsion was formulated. Correlation between dielectric constant (ε) and drug solubility in various solvents and different binary mixtures was verified. An original ternary diagram with surfactant-co-surfactant/oil/water was performed at low temperature to determine the regions of submicron emulsions. A dramatic change in the magnitude of benzoyl peroxide solubility occurred above a dielectric constant value of about 20. The solubility of this drug can be enhanced by the replacement of polar solvent by a vehicle of lower dielectric constant. A stable submicron emulsion gel was made with cremophor EL, glycerol, caprilic-capric triglycerides, and water in the proportion of 20-20/35/25, respectively; 1.5% benzoyl peroxide was also added. This submicron emulsion vehicle consisted of oil droplets, with a mean diameter of approximately 100-150 nm, dispersed in a continuous water phase. These studies confirm the potential of benzoyl peroxide incorporation into submicron emulsion gel and the stability of this formulation.  相似文献   

3.
Objective: To develop a submicron emulsion for etoposide with a high drug loading capacity using a drug–phospholipid complex combined with drug freeze-drying techniques. Methods: An etoposide–phospholipid complex (EPC) was prepared and its structure was confirmed by X-ray diffraction and differential scanning calorimetry analysis. A freeze-drying technique was used to produce lyophilized etoposide emulsions (LEPE), and LEPE was investigated with regard to their appearance, particle size, and zeta potential. The pharmacokinetic study in vivo was determined by the UPLC/MS/MS system. Results: It showed that EPC significantly improved the liposolubility of etoposide, indicating a high drug loading intravenous emulsion could be easily prepared by EPC. Moreover, the obtained loading of etoposide in the submicron emulsion was 3.0 mg/mL, which was three times higher than that of the previous liquid emulsions. The optimum cryoprotectant was trehalose (15%) in freeze-drying test. The median diameter, polydispersity index, and zeta potential of the optimum formulation of LEPE were 226.1 ± 5.1 nm, 0.107 ± 0.011, and ?36.20 ± 1.13 mV, respectively. In addition, these parameters had no significant change during 6 months storage at 4 ± 2°C. The main pharmacokinetic parameters exhibited no significant differences between LEPE and etoposide commercial solution except for area under the concentration–time curve and clearance. Conclusions: The stable etoposide emulsion with a high drug loading was successfully prepared, indicating the amount of excipients such as the oil phase and emulsifiers significantly decreased following administration of the same dose of drug, effectively reducing the metabolism by patients while increasing their compliance. Therefore, LEPE has a great potential for clinical applications.  相似文献   

4.
ABSTRACT

The aim of this study performed at ambient temperature was first to determine the solubility of benzoyl peroxide in various solvents with a large range of polarity. All these solvents can be used in the dermatological field. Then, using the most suitable solvent, a new drug vehicle submicron oil-in-water emulsion was formulated. Correlation between dielectric constant (ε) and drug solubility in various solvents and different binary mixtures was verified. An original ternary diagram with surfactant–co-surfactant/oil/water was performed at low temperature to determine the regions of submicron emulsions. A dramatic change in the magnitude of benzoyl peroxide solubility occurred above a dielectric constant value of about 20. The solubility of this drug can be enhanced by the replacement of polar solvent by a vehicle of lower dielectric constant. A stable submicron emulsion gel was made with cremophor EL, glycerol, caprilic–capric triglycerides, and water in the proportion of 20–20/35/25, respectively; 1.5% benzoyl peroxide was also added. This submicron emulsion vehicle consisted of oil droplets, with a mean diameter of approximately 100–150 nm, dispersed in a continuous water phase. These studies confirm the potential of benzoyl peroxide incorporation into submicron emulsion gel and the stability of this formulation.  相似文献   

5.
A novel parenteral formulation for tetrazepam (10 mg/ml) was developed using lipid emulsions. This formulation utilized a new lipid emulsion formulation, which was developed by changing the polarity of the oil phase. It was found that increasing the polarity of the oil phase resulted in enhanced solubility of tetrazepam. Tetrazepam showed higher solubility in a mixture of castor oil and middle-chain triglycerides (MCTs) (1:1) than in any other oil investigated. This mixture resulted in low interfacial tension and moderate viscosity, which seemed to be the optimum oil phase. In addition, to increase the concentration of tetrazepam, an emulsion formulation containing 30% oil phase was produced and optimized. The drug-free emulsion formulation showed fine particle sizes with an imperceptible change in physicochemical properties after more than 2 years on the shelf. As a result, it was possible to produce a parenteral emulsion formulation containing 10 mg/ml tetrazepam. No change in the physicochemical properties of the emulsion was observed after the addition of tetrazepam. The tetrazepam emulsion showed stable behavior during the autoclaving process and good shelf stability for at least 10 months as well. Tetrazepam itself also displayed good stability during the autoclaving process and also showed good shelf stability in this emulsion formulation.  相似文献   

6.
Poor solubility of newly developed drug molecules is the main problem in recent drug discovery research, so novel drug delivery approaches are being used to deliver these molecular entities for pharmacological action. Colloidal carriers (emulsion, suspensions, liposomes, polymer nanoparticles and solid lipid nanoparticles) have been used to administer poorly soluble drugs, but solid lipid nanoparticles are found to be the most reliable carriers for this type of drugs due to its advantages over other carriers. Solid lipid nanoparticles have the potential to solve the drug delivery problems with safe excipients used in its formulation. In this review all the aspects of solid lipid nanoparticles production, stability, characterization, differentiation based on route, preservation and storage have been discussed.  相似文献   

7.
Objective: To obtain stable positively charged Azithromycin (AZI) emulsions with a mean droplet size of 120 nm for the treatment of eye diseases. Methods: The emulsions were obtained by using a suitable homogenization process. The physical stability was monitored by measuring the particle size, zeta potential, and visible appearance. The drug entrapment efficiency was measured by both ultracentrifugation and ultrafiltration methods. Compared with a phosphate solution of AZI, the stability profiles of AZI in lipid emulsions at various pH values were monitored by high-performance liquid chromatography. A pharmacokinetic study was performed to determine the drug levels in rabbit tear fluid using Ultra-performance liquid Chromatography–mass spectrometry. Results: Almost all the AZI in the lipid emulsion was distributed in the oil phase and small unilamellar liposomes without contact with water, thereby avoiding hydrolysis. The elimination of the AZI lipid emulsions in tear fluid was consistent with the basic linear pharmacokinetic characteristics. The AUC0-t of the AZI lipid emulsion (1%, w/v) and aqueous solution drops (1%, w/v) was 1873.58 ± 156.87 and 1082.46 ± 179.06 μgh/ml respectively. Conclusions: This study clearly describes a new formulation of AZI lipid emulsion for ocular administration, and lipid emulsions are promising vehicles for ophthalmic drug delivery.  相似文献   

8.
Emulsion-based remediation with biodegradable vegetable oils was investigated as an alternative technology for the treatment of subsurface DNAPLs (dense non-aqueous phase liquids) such as TCE (trichloroethylene) and PCE (perchloroethylene). Corn and olive oil emulsions obtained by homogenization at 8000rpm for 15min were used. The emulsion droplets prepared with corn and olive oil gave a similar size distribution (1-10microm) and almost all of initially injected oil, >90%, remained in a dispersed state. In batch experiments, 2% (v/v) oil emulsion could adsorb up to 11,000ppm of TCE or 18,000ppm of PCE without creating a free phase. Results of one-dimensional column flushing studies indicated that contaminants with high aqueous solubility could be efficiently removed by flushing with vegetable oil emulsions. Removal efficiencies exceeded 98% for TCE and PCE with both corn and olive oil emulsions. The results of this study show that flushing with biodegradable oil emulsion can be used for the remediation of groundwater contaminated by DNAPLs.  相似文献   

9.
Submicron emulsion was prepared for rapid and effective nasal absorption of zolmitriptan (ZT). The different charge inducers and pH values of the formulations were evaluated to optimize the formulations. Submicron emulsion prepared by using stearylamine as positive charge inducer with pH of 5.0 was stable and most of ZT was freely dispersed in the aqueous phase of the preparation. In vitro release study demonstrated that ZT from the submicron emulsion preparation could be released as fast as that from the solution preparation. The pharmacokinetics was studied after intranasal administration of the submicron emulsion and solution preparation of ZT to beagle dogs. ZT from the submicron emulsion was absorbed much more rapidly and the absolute availability of the submicron emulsion preparation was significantly higher compared with the solution preparation. The nasal ciliotoxicity of the preparations was evaluated by using in situ toad palate model, which indicated that the submicron emulsion of ZT did not exhibit any obvious nasal ciliotoxicity. These results demonstrated that the submicron emulsion preparation of ZT was a relatively safe dosage form for rapid and effective intranasal delivery of ZT.  相似文献   

10.
The formulation of sunscreen products requires understanding of the solubilization of these products in different vehicles to obtain aesthetic preparations and to evaluate long-term stability. For this study, two different ultraviolet (UV) filters were selected: oxybenzone (powder) and octyl-methoxycinnamate (liquid). First, the solubility of these UV filters was tested using a three-component simplex-centroid design strategy. The mixtures were prepared with three oily phases used in this field of cosmetics: liquid paraffin, isopropyl myristate, and coconut oil. A phase diagram method was used to carry out a systematic study of submicron oil-in-water emulsions. Phase diagrams were produced by diluting fixed binary mixtures with water. The surfactant consisted of polyoxyethylene-20-sorbitan monostearate/sorbitan monostearate (50/50, w/w). The oily phase contained equal quantities of each oil studied. From this water/surfactant/oil ternary system, we selected two reference emulsions with receptively 75/5/20 and 68/7/25 proportions. Photon correlation spectroscopy (PCS) was used to investigate the influence of these two UV filters at several concentrations on droplet size and distribution of the oil droplets in the material. All emulsions were stored and checked every month for 6 months.  相似文献   

11.
Submicron emulsion was prepared for rapid and effective nasal absorption of zolmitriptan (ZT). The different charge inducers and pH values of the formulations were evaluated to optimize the formulations. Submicron emulsion prepared by using stearylamine as positive charge inducer with pH of 5.0 was stable and most of ZT was freely dispersed in the aqueous phase of the preparation. In vitro release study demonstrated that ZT from the submicron emulsion preparation could be released as fast as that from the solution preparation. The pharmacokinetics was studied after intranasal administration of the submicron emulsion and solution preparation of ZT to beagle dogs. ZT from the submicron emulsion was absorbed much more rapidly and the absolute availability of the submicron emulsion preparation was significantly higher compared with the solution preparation. The nasal ciliotoxicity of the preparations was evaluated by using in situ toad palate model, which indicated that the submicron emulsion of ZT did not exhibit any obvious nasal ciliotoxicity. These results demonstrated that the submicron emulsion preparation of ZT was a relatively safe dosage form for rapid and effective intranasal delivery of ZT.  相似文献   

12.
Antimicrobial efficacy of methyl and propylparaben combination as potential preservatives for submicron emulsions, and the effect of oil and lecithin concentration on the microbial growth were investigated. Parabens were ineffective in standard or doubled concentrations as per pharmacopoeial criteria. Poor growth inhibition and multiplication of reference strains point to protective and growth properties of submicron emulsions. No correlation was observed between oil/lecithin ratio and efficacy of parabens; partitioning of the latter into the oily phase and lipophilic domains could be the reason for such effect. Further studies are necessary to establish a stable and safe composition of such formulations.  相似文献   

13.
Docetaxel is a potent anticancer agent that will benefit greatly from alternative delivery systems that can overcome several reported adverse effects due to the drug itself and/or the solvent system in the current clinical formulation. In this regard, a new nanoparticle delivery system for docetaxel was prepared from Gelucire-based nanoemulsions by using binary mixtures of Gelucire 44/14 and cetyl alcohol as NP matrix materials. Various amounts of docetaxel (50-1000 microg/ml) were added to the oil phase of the nanoemulsions prior to obtaining solid nanoparticles. The nanoparticles (100-140 nm) achieved high entrapment efficiency (> or = 89%) of docetaxel which was maintained upon storage at 4 degrees C and 25 degrees C. Additional data indicated the Gelucire component in NP played influential roles in drug release possibly by facilitating diffusion from NPs and/or accelerating erosion of NP matrix. Docetaxel-loaded nanoparticles did not cause any significant red blood cell lysis or platelet aggregation nor activate macrophages. Also in-vitro antitumor efficacy in human lung adenocarcinoma cells was demonstrated based on cell cytotoxicity, production of reactive oxygen species and reduction of mitochondrial potential. Enhancement of in-vitro antitumor effects of docetaxel with Gelucire-based NPs could be ascribed to improved particle dispersion and efficient cell permeability. Studies in BALB/c mice demonstrated the stability/retention of NPs in blood circulation and the potential in facilitating docetaxel absorption across the peritoneal cavity. The nanoparticles reported herein may be effective as novel biocompatible and effective delivery systems for docetaxel.  相似文献   

14.
Present investigation aimed to prepare, optimise, and characterise lipid nanocapsules (LNCs) for improving the solubility and bioavailability of efavirenz (EFV). EFV‐loaded LNCs were prepared by the phase‐inversion temperature method and the influence of various formulation variables was assessed using Box–Behnken design. The prepared formulations were characterised for particle size, polydispersity index (PdI), zeta potential, encapsulation efficiency (EE), and release efficiency (RE). The biocompatibility of optimised formulation on Caco‐2 cells was determined using 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyltetrazolium bromide assay. Then, it was subjected to ex‐vivo permeation using rat intestine. EFV‐loaded LNCs were found to be spherical shape in the range of 20–100 nm with EE of 82–97%. The best results obtained from LNCs prepared by 17.5% labrafac and 10% solutol HS15 when the volume ratio of the diluting aqueous phase to the initial emulsion was 3.5. The mean particle size, zeta potential, PdI, EE, drug loading%, and RE during 144 h of optimised formulation were confirmed to 60.71 nm, −35.93 mV, 0.09, 92.60, 7.39 and 55.96%, respectively. Optimised LNCs increased the ex vivo intestinal permeation of EFV when compared with drug suspension. Thus, LNCs could be promising for improved oral delivery of EFV.Inspec keywords: biomedical materials, solubility, drugs, encapsulation, emulsions, nanoparticles, particle size, nanofabrication, suspensions, toxicology, nanomedicine, cellular biophysics, lipid bilayers, electrokinetic effects, drug delivery systems, molecular biophysicsOther keywords: ex‐vivo permeation, diluting aqueous phase, mean particle size, zeta potential, drug loading, optimised formulation, ex vivo intestinal permeation, improved oral delivery, efavirenz oral delivery, optimisation, ex‐vivo gut permeation study, solubility, bioavailability, phase‐inversion temperature method, formulation variables, Box–Behnken design, polydispersity index, encapsulation efficiency, Caco‐2 cells, lipid nanocapsules, 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyltetrazolium bromide assay, EFV‐loaded LNC, drug suspension, size 20.0 nm to 100.0 nm, time 144.0 hour, size 60.71 nm, voltage ‐35.93 mV  相似文献   

15.
液膜法处理高氟废水研究   总被引:10,自引:0,他引:10  
利用N205-N1923-煤油液膜体系,CaCl2溶液作内相,对高氟废水的处理进行了研究。利用正交实验确定了影响最大的因素,并研究了各种因素对处理的影响。经30min处理,外相F^-浓度可由0.500g/L降至0.010g/L以下,可达到工业排放标准。  相似文献   

16.
Docetaxel was used extensively in ovarian cancer treatment in the combination with platinum compound. However, the serious side effect of clinically available formulation limits its further application. The aim of this work was to evaluate the pharmacokinetic behavior, acute toxicity and in vivo antitumor efficacy in murine ovarian cancer model of docetaxel loaded solid lipid nanoparticles (DSN). The particle size of DSN was 97.4 +/- 6.4 nm, and the encapsulation efficiency and loading capacity were 91.1 +/- 1.5% and 3.52 +/- 0.05%, respectively. The release behavior of docetaxel from DSN showed that only 45% of docetaxel was released within 24 h. The pharmacokinetics and biodistribution showed that the half-life (t1/2) and mean residence time (MRT) of docetaxel in DSN treated rats were significantly elongated because of the redistribution of docetaxel from reticulo-endothelial system (RES) to circulation system. Compared with Taxotere, DSN showed more potent in vivo anti-ovarian cancer activity with higher maximum tolerated dose (MTD). Our results suggested for the first time that solid lipid nanoparticles could be a potential candidate to enhance the efficacy of anti-ovarian cancer of docetaxel with low toxicity. The systematical study on pharmacokinetics, biodistribution, in vivo anti-tumor activity and MTD of DSN could improve the understanding of increased antitumor activity of DSN in vivo.  相似文献   

17.
Fast lipid peroxidation in emulsified oils results in carcinogens formation and product rancidity. Prevention of oxidative degradation in oil-in-water emulsion has been achieved by encapsulating of each droplet of dispersed phase in antioxidant multilayer coating shell. The fabrication comprised placing a surface-active ionic emulsifier at the oil/water interface followed by stepwise alternate adsorption a biocompatible polyelectrolyte and antioxidant layers. Uncoupled polyelectrolyte macromolecules and antioxidant were thoroughly removed from formulation, thus the protection was entirely attributed to the droplets' shell. The experiments were performed using linseed oil, the richest source of highly unstable omega-3 alpha linolenic essential fatty acid. Bovine serum albumin (BSA) was exploited as an anionic emulsifier. The biodegradable coating shell was formed of poly-l-arginine (PARG) and dextran sulfate (DS) applied as a polycation and a polyanion respectively. Tannic acid (TA) known as a natural antioxidant and possessing antimicrobial properties was used as a protective remedy. Oil microdroplets coated with TA-containing shell displayed physical-chemical and mechanical stability in aqueous phase and over freeze-drying process as determined by ζ-potential measurements, dynamic light scattering (DLS), and confocal laser scanning microscopy (CLSM). Oxidation of emulsified oil was monitored by formation of malondialdehyde (MDA) in the samples quantified by Thiobarbituric Acid Reactive Substances (TBARS) assay. Coating shell with an incorporated layer of TA effectively suppressed oxidation in water-dispersed oil droplets and affected iron-catalyzed oxidation over 15 days of incubation at 37 °C in 0.3 mM FeBr2 solution. Antioxidant activity of TA-containing shell assembled around each oil droplet was found to be higher than that of mixed tocopherols (MT) added to linseed oil in concentration of 10000 ppm.  相似文献   

18.
The purpose of this study was to investigate the degradation kinetics of teniposide in lipid emulsion and aqueous solution. The chemical stability of teniposide in lipid emulsion and aqueous solution at various pH values and temperatures was monitored by high-performance liquid chromatography. In addition, the viscosities of emulsion at different temperatures were investigated. The degradation of teniposide both in emulsion and in aqueous solution was shown to follow pseudo-first-order degradation kinetics. The t (1/2) values of teniposide lipid emulsion (TLE) and the aqueous solution were 80 and 2.6 days at 10 degrees C, respectively. Under the most stable pH range of 6.0-6.5, stability of teniposide in the emulsion increased more than 30-fold compared with that in aqueous solution. Furthermore, there was a difference between the shelf life of TLE actually measured (29 days) at 10 degrees C and the one deduced (15 days) from the degradation data of high temperatures by Arrhenius equation. It could be hypothesized that the difference was due to a slower diffusion of teniposide from oil phase to aqueous phase at the lower temperatures, which would be a speed-limited process in the degradation of TLE. The results of viscosity test confirmed the presumption.  相似文献   

19.
Freund's Incomplete Adjuvant (FIA), which is used in vaccine therapy, is a water-in-oil emulsion delivery system consisting of an aqueous internal phase containing an antigenic protein dispersed in an external phase containing a mixture of mannide monooleate and light mineral oil. Preformulation studies are reported in this investigation for FIA emulsion. The preformulation studies included the determination of the critical micelle concentration (CMC) of the formulations investigated, the surface activity of mannide monooleate at the interface between the oil phase and the aqueous phase containing ovalbumin as the model antigenic protein, and the effect of ovalbumin on the surface activity at the interface. The influence of the concentration of mannide monooleate and/or ovalbumin on the interfacial tension between light mineral oil and either purified water or 0.9% w/v normal saline solution was measured by the DuNouy Ring Method at 25 degrees C. The CMC was determined experimentally from the relationship between the concentration of the surface active agent in each formulation and the interfacial tension. The number of moles of the surface active agent per unit area at the interface (surface excess concentration) was calculated from the Gibbs' Adsorption equation. The results indicated that mannide monooleate was an effective surface active agent since the formulation containing only mannide monooleate provided the lowest magnitude of CMC. The presence of the surface active agent, mannide monooleate and/or ovalbumin, in the formulations studied reduced the interfacial tension between the two phases. The surface activity was influenced by the presence of an electrolyte (sodium chloride), a protein (ovalbumin), or mannide monooleate in the formulation. The presence of antigenic proteins in the aqueous phase of a waterin-oil emulsion influenced the effectiveness of a surface active agent in the formulation.  相似文献   

20.
To develop 2-(allylthio)pyrazine (2-AP)-loaded lipid emulsion for parenteral administration, various lipid emulsions were prepared with soybean oil, lecithin, and other carriers using homogenization method, and their physical stabilities were investigated by measuring their droplet sizes. The pharmacokinetics and tissue distribution of 2-AP in lipid emulsion after intravenous administration to rats were evaluated compared with 2-AP in solution. 2-AP was lipophilic, sparingly water-soluble, and unstable in aqueous medium. The 2-AP-loaded lipid emulsion composed of 1% of 2-AP, 4% of soybean oil, 4% of lecithin, and 91% of water was physically and chemically stable for at least 8 weeks. It gave significantly faster clearance of 2-AP and higher affinity to the organs, especially the liver, compared with the 2-AP in solution, suggesting that it could selectively deliver 2-AP to the liver. Thus, the lipid emulsion with soybean oil and lecithin could be used as a potential dosage form with the liver-targeting property and enhanced stability of sparingly water-soluble 2-AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号