首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT:  The use of antimicrobial ingredients in combination with irradiation is an effective antilisterial intervention strategy for ready-to-eat meat products. Microbial safety was evaluated for frankfurters formulated with 0% or 3% added potassium lactate/sodium diacetate solution and inoculated with Listeria monocytogenes before or after treatment with irradiation (0, 1.8, or 2.6 kGy). Frankfurters were stored aerobically or vacuum packaged and L. mo nocytogenes counts and APCs were determined while refrigerated. The incorporation of lactate/diacetate with or without irradiation had a strong listeriostatic effect for aerobically stored frankfurters. Outgrowth was suppressed and counts were not different from initial counts (5.2 log CFU/frank compared with 5.0 log CFU/frank); however, those without the additive increased steadily (5.4 to 9.3 log CFU/frank). Irradiation treatments alone had higher L. monocytogenes counts after 3 wk. For vacuum-packaged frankfurters, both the addition of lactate/diacetate and irradiation were effective at controlling growth after 8 wk. Large and incremental reductions in total counts were seen for irradiation treatments. Initial counts were reduced by 3 log CFU with the application of 1.8 kGy while 2.6 kGy decreased counts over 5 log CFU. These reductions were maintained throughout storage for lactate/diacetate-treated frankfurters. By 8 wk, L. monocytogenes counts on 1.8 and 2.6 kGy irradiated frankfurters without lactate/diacetate increased to 7.43 and 6.13 log CFU, respectively. Overall, lactate/diacetate retarded the outgrowth of L. monocytogenes on frankfurters throughout aerobic storage and the combination of irradiation and 3% lactate/diacetate reduced and retarded growth of L. monocytogenes , especially during the last 2 wk of vacuum-packaged storage.  相似文献   

2.
Commercially prepared frankfurters were formulated with and without approximately 1.4% potassium lactate and 0.1% sodium diacetate and were subsequently processed in cellulose casings coated with and without nisin (approximately 50,000 IU per square inch of internal surface area) to control the outgrowth of Listeria monocytogenes during refrigerated storage. The frankfurters were inoculated with approximately 5 log CFU per package of a five-strain mixture of L. monocytogenes and then vacuum sealed before being stored at 4 degrees C for 60 to 90 days. Surviving organisms were recovered and enumerated by rinsing each package with 18 ml of sterile 0.1% peptone water and plating onto MOX selective agar. The data for each of two trials were averaged. In packages that contained frankfurters formulated with potassium lactate and sodium diacetate and prepared in nisin-coated casings, L. monocytogenes levels decreased by 1.15 log CFU per package after 90 days of storage. L. monocytogenes levels decreased by 0.95 log CFU per package in frankfurters that were prepared in casings that were not coated with nisin. In packages of frankfurters that were formulated without potassium lactate and sodium diacetate and prepared in nisin-coated casings, L. monocytogenes levels decreased by 0.88 log CFU per package after 15 days of storage but then increased appreciably thereafter over a 60-day period of refrigerated storage. There was also an appreciable increase in pathogen numbers during 60 days of storage in otherwise similar frankfurters formulated without potassium lactate and sodium diacetate prepared in casings that were not coated with nisin. These data confirm that potassium lactate and sodium diacetate display listeriostatic activity as an ingredient of commercial frankfurters. These data also establish that cellulose casings coated with nisin display only moderate antilisterial activity in vacuum-sealed packages of commercially prepared frankfurters during storage at 4 degrees C.  相似文献   

3.
Recontamination of cooked ready-to-eat (RTE) chicken and beef products with Listeria monocytogenes has been a major safety concern. Natural antimicrobials in combinations can be an alternative approach for controlling L. monocytogenes. Therefore, the objectives of this study were to evaluate the inhibitory activities against L. monocytogenes of nisin (6,400 IU/ ml), grape seed extract (GSE; 1%), and the combination of nisin and GSE both in tryptic soy broth with 0.6% yeast extract (TSBYE) and on the surface of full-fat turkey frankfurters. TSBYE was incubated at 37 degrees C for 72 h and turkey frankfurters at 4 or 10'C for 28 days. Inocula were 6.7 or 5 log CFU per ml or g for TSBYE or frankfurters, respectively. After 72 h in TSBYE, nisin alone did not show any inhibitory activity against L. monocytogenes. The combination of nisin and GSE gave the greatest inhibitory activity in both TSBYE and on turkey frankfurters with reductions of L. monocytogenes populations to undetectable levels after 15 h and 21 days, respectively. This combination of two natural antimicrobials has the potential to control the growth and recontamination of L. monocytogenes on RTE meat products.  相似文献   

4.
ABSTRACT: The antimicrobial effect of zein coatings containing nisin and potassium sorbate on turkey frankfurters against Listeria monocytogenes strain V7 at 4°C was determined. Our objectives were (1) to determine whether zein coatings with nisin and potassium sorbate alone or in combinations would reduce the growth of L. monocytogenes on turkey frankfurters at 4°C; (2) to determine the effect of zein, nisin, or potassium sorbate on L. monocytogenes after being challenged with high or low initial inoculum counts (log 6 or log 4); and (3) to determine whether potassium sorbate had any synergistic effect on the activity of nisin. Initial counts decreased for all the treatments containing nisin. Over 28 d, the nisin-alone treatment counts were lower than the control by 6.1 logs for the high inoculum. No cells were detected for the low inoculum test by day 21. The solvent controls (ethanol-glycerol or propylene glycol), yielded mean counts similar to those for zein-ethanol-glycerol or zein-propylene-glycol, giving 4 to 5 log lower counts versus the untreated controls at 28 d. Therefore zein per se had no antimicrobial activity. Use of 0.4% potassium sorbate did not significantly inhibit growth compared with the control or solvent-only controls. No significantly lower counts of L. monocytogenes were observed for zein-nisin coating treatments with sorbate versus without sorbate. Therefore, treatments using nisin alone or in combination with zein, ethanol-glycerol, or propylene glycol if approved for use on ready-to-eat foods, show promise for use as barriers against the growth of recontaminating, L. monocytogenes cells on this food substrate at 4°C.  相似文献   

5.
ABSTRACT:  This study investigated the use of sodium levulinate to prevent outgrowth of Listeria monocytogenes in refrigerated ready-to-eat (RTE) meat products. Turkey breast roll and bologna were formulated to contain 1%, 2%, or 3% (w/w) sodium levulinate, 2% sodium lactate, a 2% combination of sodium lactate and sodium diacetate (1.875% sodium lactate and 0.125% sodium diacetate), or no antimicrobial (control). Samples of the RTE products were sliced, inoculated with 102 to 103 CFU/cm2 of a 5-strain cocktail of L. monocytogenes , vacuum packaged, and stored at refrigeration temperature for 0 to 12 wk. Counts reached 108 CFU/cm2 on control turkey roll product after 8 wk, and over 107 CFU/cm2 on control bologna after 12 wk. Addition of 2% or more sodium levulinate to turkey roll and 1% or more sodium levulinate to bologna completely prevented growth of L. monocytogenes during 12 wk of refrigerated storage. A consumer taste panel with pathogen-free samples found no differences in the overall liking among the preparations of turkey roll or among preparations of bologna. These results show that sodium levulinate is at least as effective at inhibiting outgrowth of L. monocytogenes in RTE meat products as the current industry standards of lactate or lactate and diacetate, and levulinate addition does not alter the overall liking of the RTE meat products.  相似文献   

6.
Generally-recognized-as-safe chemicals applied to the surfaces of turkey frankfurters were evaluated for their ability to reduce populations of or inhibit the growth of Listeria monocytogenes. Frankfurters were treated prior to inoculation by dipping for 1 min in a solution of one of four preservatives (sodium benzoate, sodium propionate, potassium sorbate, and sodium diacetate) at three different concentrations (15, 20, and 25% [wt/vol]), with < 0.3% of the preservative being present for each frankfurter. Subsequently, 0.1 ml of a five-strain mixture of L. monocytogenes (10(6) CFU/ml) was used to surface inoculate each frankfurter separately in a sterile stomacher bag. Inoculated frankfurter bags were held at 4, 13, and 22 degrees C, and L. monocytogenes cells were enumerated at 0, 3, 7, 10, and 14 days of storage. The results of this study revealed that at all three concentrations of all four preservatives, the initial populations of L. monocytogenes decreased immediately by 1 to 2 log10 CFU/g. After 14 days of storage at 4 degrees C, L. monocytogenes counts for all treated frankfurters were 3 to 4 log10 CFU/g less than those for the untreated frankfurters. After 14 days of storage at 13 degrees C, L. monocytogenes counts for frankfurters treated with 25% sodium benzoate or 25% sodium diacetate were 3.5 to 4.5 log10 CFU/g less than those for untreated frankfurters, and those for frankfurters treated with 25% sodium propionate or 25% potassium sorbate were 2.5 log10 CFU/g less than those for untreated frankfurters. In all instances, the degree of growth inhibition was directly proportional to the concentration of the preservative. Only frankfurters treated with 25% sodium diacetate or sodium benzoate were significantly inhibitory to L. monocytogenes when held at 22 degrees C for 7 days or longer. Interestingly, the untreated frankfurters held at 22 degrees C were spoiled within 7 days, with copious slime formation, whereas there was no evidence of slime on any treated frankfurters after 14 days of storage.  相似文献   

7.
ABSTRACT:  Microwave oven heating was evaluated for inactivation of  Listeria monocytogenes  on inoculated and stored frankfurters. Frankfurters formulated without/with 1.5% potassium lactate and 0.1% sodium diacetate were inoculated with  L. monocytogenes  (1.9 ± 0.2 log CFU/cm2), vacuum-packaged, and stored (4 °C) to simulate conditions prior to purchase by consumers. At storage days 18, 36, and 54, packages were opened and placed at 7 °C, simulating aerobic storage in a household refrigerator. At 0, 3, and 7 d of aerobic storage, 2 frankfurters were placed in a bowl with water (250 mL) and treated in a household microwave oven at high (1100 W) power for 30, 45, 60, or 75 s, or medium (550 W) power for 60 or 75 s. Frankfurters and the heating water were analyzed for total microbial counts and  L. monocytogenes  populations. Exposure to high power for 75 s reduced pathogen levels (0.7 ± 0.0 to 1.0 ± 0.1 log CFU/cm2) to below the detection limit (<−0.4 log CFU/cm2) on frankfurters with lactate/diacetate, even after 54 d of vacuum-packaged storage followed by 7 d of aerobic storage. For frankfurters without lactate/diacetate, high power for 75 s caused reductions between > 1.5 and 5.9 log CFU/cm2 from control levels of 1.5 ± 0.1 to 7.2 ± 0.5 log CFU/cm2. Depending on treatment and storage time, the water used to reheat the frankfurters had viable  L. monocytogenes  counts of <−2.4 to 5.5 ± 0.5 log CFU/mL. The results indicated that frankfurters should be reheated in a microwave oven at high power for 75 s to inactivate up to 3.7 log CFU/cm2 of  L. monocytogenes  contamination.  相似文献   

8.
Contamination of ready-to-eat foods, such as frankfurters, with Listeria monocytogenes, is a major concern that needs to be addressed in order to enhance the safety of these products. The objective of this study was to determine the effectiveness of combinations of antimicrobials included in the formulation of frankfurters against L. monocytogenes inoculated (10(3) to 10(4) CFU/cm2) on their surface after peeling and before vacuum packaging. In addition, the antilisterial effect of immersing the packaged products, prepared with or without antimicrobials, in hot (75 or 80 degrees C) water for 30 to 90 s was evaluated. Samples were stored at 4 degrees C for up to 120 days and periodically analyzed for pH and for microbial growth on tryptic soy agar plus 0.6% yeast extract (TSAYE) and PALCAM agar. Sodium lactate (1.8%; 3% of a 60% commercial solution) used alone inhibited growth of L. monocytogenes for 35 to 50 days, whereas when used in combination with 0.25% sodium acetate, sodium diacetate, or glucono-delta-lactone (GDL), sodium lactate inhibited growth throughout storage (120 days). Immersing packaged frankfurters in hot water (80 degrees C, 60 s) reduced inoculated populations of L. monocytogenes by 0.4 to 0.9 log CFU/cm2 and reduced its growth by 1.1 to 1.4 log CFU/cm2 at 50 to 70 days of storage in samples containing 1.8% sodium lactate alone. However, immersion of frankfurters containing no antimicrobials in hot water (75 or 80 degrees C) did not inhibit growth of the pathogen for more than 10 to 20 days, unless one frankfurter was placed per bag and heat treated for 90 s. These results indicate that the inclusion of 1.8% sodium lactate with 0.25% sodium acetate, sodium diacetate, or GDL in cured meat formulations may control L. monocytogenes growth during refrigerated (4 degrees C) storage. Additional studies are required to evaluate the effects of these combinations at abusive temperatures of storage, as well as on additional processed meat formulations and on the sensory quality and shelf life of products.  相似文献   

9.
ABSTRACT: This study investigated the effect of nisin added to zein film coatings (Z) coated onto ready-to-eat chicken against L. monocytogenes. L. monocytogenes inoculated chicken samples were dipped into Z dissolved in propylene glycol (ZP) or ethanol (ZE), with and without added nisin (N) (1000 IU/g) and/or 1% calcium propionate (CP) then stored at 4 °C or 8 °C for 24 d. After 16 d at 4 °C the growth of L. monocytogenes (6.8 log CFU/g) was suppressed by 4.5 to 5 log CFU/g and at 2.7 log CFU/g counts were maintained at a nondetectable level from day 0 to day 24 with ZEN, ZPNCP, or ZENCP. Zein film coatings with nisin can prevent the growth of L. monocytogenes on ready-to-eat chicken.  相似文献   

10.
Surface pasteurization and food-grade chemicals were evaluated for the ability to control listeriae postprocess on cook-in-bag turkey breasts (CIBTB). Individual CIBTB were obtained directly from a commercial manufacturer and surface inoculated (20 ml) with a five-strain cocktail (ca. 7.0 log) of Listeria innocua. In each of two trials, the product was showered or submerged for up to 9 min with water heated to 190, 197, or 205 degrees F (ca. 87.8, 91.7, or 96.1 degrees C) in a commercial pasteurization tunnel. Surviving listeriae were recovered from CIBTB by rinsing and were then enumerated on modified Oxford agar plates following incubation at 37 degrees C for 48 h. As expected, higher water temperatures and longer residence times resulted in a greater reduction of L. innocua. A ca. 2.0-log reduction was achieved within 3 min at 205 and 197 degrees F and within 7 min at 190 degrees E In related experiments, the following treatments were evaluated for control of Listeria monocytogenes on CIBTB: (i) a potassium lactate-sodium diacetate solution (1.54% potassium lactate and 0.11% sodium diacetate) added to the formulation in the mixer and 150 ppm of acidified sodium chlorite applied to the surface with a pipette, or (ii) a potassium lactate-sodium diacetate solution only, or (iii) no potassium lactate-sodium diacetate solution and no acidified sodium chlorite. Each CIBTB was inoculated (20 ml) with ca. 5 log CFU of a five-strain mixture of L. monocytogenes and then vacuum sealed. In each of two trials, half of the CIBTB were exposed to 203 degrees F water for 3 min in a pasteurization tunnel, and the other half of the CIBTB were not; then, all CIBTB were stored at 4 degrees C for up to 60 days, and L. monocytogenes was enumerated by direct plating onto modified Oxford agar. Heating resulted in an initial reduction of ca. 2 log CFU of L. monocytogenes per CIBTB. For heated CIBTB, L. monocytogenes increased by ca. 2 log CFU per CIBTB in 28 (treatment 1), 28 (treatment 2), and 14 (treatment 3) days. Thereafter, pathogen levels reached ca. 7 log CFU per CIBTB in 45, 45, and 21 days for treatments 1, 2, and 3, respectively. In contrast, for nonheated CIBTB, L. monocytogenes levels increased from ca. 5 log CFU per CIBTB to ca. 7 log CFU per CIBTB in 28, 21, and 14 days for treatments 1, 2, and 3, respectively. Lastly, in each of three trials, we tested the effect of hot water (203 degrees F for 3 min) postprocess pasteurization of inoculated CIBTB on the lethality of L. monocytogenes and validated that it resulted in a 1.8-log reduction in pathogen levels. Collectively, these data establish that hot water postprocess pasteurization alone is effective in reducing L. monocytogenes on the surface of CIBTB. However, as used in this study, the potassium lactate-sodium diacetate solution and acidified sodium chlorite were only somewhat effective at controlling the subsequent outgrowth of this pathogen during refrigerated storage.  相似文献   

11.
ABSTRACT:  Listeria monocytogenes , a psychrotrophic foodborne pathogen, is a recurring postprocess contaminant on ready-to-eat meat (RTE) products, including frankfurters. Potassium lactate (PL) and sodium diacetate (SDA) are FDA-approved antimicrobials that inhibit the growth of L. monocytogenes when incorporated into the formulation of fine emulsion sausage. Flash (steam) pasteurization (FP) has been shown to reduce levels of L. monocytogenes , and its surrogate L. innocua , on frankfurter surfaces. The ability of FP to inactivate and prevent the growth of the L. monocytogenes surrogate L. innocua in a pilot plant setting was investigated. FP treatment (1.5 s, 121 °C) of single layers of frankfurters that were surface-inoculated with either 5, 4, or 3 log CFU/g of L. innocua immediately before FP (1.5 s, 121 °C) resulted in log reductions of 1.97 (± 0.11), 2.03 (± 0.10), or 2.07 (± 0.14), respectively. Inoculum level had no effect on the inactivation of L. innocua . Following 8 wk of refrigerated storage (4 °C), L. innocua levels decreased by 0.5 log in non-FP-treated frankfurter packs, while the 2 log reduction of L. innocua was maintained for FP-treated frankfurters. FP (1.5 s, 121 °C) had no effect on frankfurter color or texture. Because the numbers of L. monocytogenes associated with contaminations of ready-to-eat meats are typically very low, the use of FP in combination with PL and SDA has the potential to reduce the number of frankfurter recalls and foodborne illness outbreaks.  相似文献   

12.
The inhibition of Listeria monocytogenes by sodium lactate and sodium diacetate was evaluated for wieners containing pork, turkey, and beef and for cooked bratwurst containing beef and pork. Both products were supplied by commercial manufacturers. Treated products were surface-inoculated with 10(5) CFU of L. monocytogenes per package and vacuum-packed in gas-impermeable pouches. Wieners were stored for 60 days at 4.5 degrees C, and bratwurst were stored for 84 days at 3 and 7degrees C. A surface treatment that consisted of dipping wieners into solutions containing < or = 6% lactate and < or = 3% diacetate for 5 s did not delay pathogen growth compared with that for untreated wieners. In additional trials, the antilisterial activity of lactate and diacetate in wiener and bratwurst formulations was evaluated. Lactate levels ranged from 1.32 to 3.4%, and diacetate was evaluated at 0.1 and 0.25%. The growth of L. monocytogenes was delayed for 4 and 12 weeks at 7 and 3 degrees C, respectively, on uncured, unsmoked bratwurst formulated with 3.4% lactate/0.1% diacetate, compared with 1 and 2 weeks, respectively, for the formulation containing 2% lactate. L. monocytogenes grew by > or = 1 log unit after 4 weeks' storage at 3 or 7 degrees C on cured, smoked bratwurst without lactate or diacetate, but growth was inhibited for 12 weeks on cured, smoked bratwurst formulated with 3.4% lactate and 0.1% diacetate. Sodium lactate levels of > or = 3% and combinations of > or = 1% lactate plus > or = 0.1% diacetate prevented listerial growth on wieners stored for 60 days at 4.5 degrees C. These results indicate that dipping wieners in lactate-diacetate solutions is not an efficient way to apply these antimicrobial agents to wieners. However, the inclusion of combinations of sodium lactate and sodium diacetate in wiener or bratwurst formulations inhibits the growth of L monocytogenes at < or = 7 degrees C, and an additional margin of safety was observed for products that are cured and smoked.  相似文献   

13.
This research was conducted to study the growth of Listeria monocytogenes inoculated on frankfurters stored at different conditions as a basis for a safety-based consume by shelf life date label. Three L. monocytogenes strains were separately inoculated at 10 to 20 CFU/cm2 onto frankfurters that were previously formulated with or without high pressure and with or without added 2% potassium lactate (PL) and 0.2% sodium diacetate (SD). Inoculated frankfurters were air or vacuum packaged; stored at 4, 8, or 12 degrees C; and L. monocytogenes and psychrotrophic plate counts were determined for 90, 60, and 45 days, respectively, or until the stationary phase was reached. The data (log CFU per square centimeter versus time) were fitted using the Baranyi-Roberts model to determine maximum growth rates and lag-phase time. The maximum growth rates and the lag time under each growth condition were used to calculate the time to reach 100-fold the initial Listeria population. In frankfurters lacking PL and SD, the count of all strains increased by 2 log after 18 to 50 days at 4 degrees C and 4 to 13 days at 8 degrees C. The growth was inhibited at 4 and 8 degrees C in frankfurters containing PL and SD, but one ribotype was capable of growing, with the time to reach 100-fold the initial Listeria population ranging from 19 to 35 days at 12 degrees C. In most cases, the time to reach 100-fold the initial Listeria population of L. monocytogenes was significantly longer in vacuum-packaged frankfurters as compared with air-packaged samples. Inclusion of PL and SD also inhibited the growth of psychrotrophs, but at all temperatures the psychrotrophic plate counts were greater than 4 log CFU/cm2 at the end of the experiments. These results indicated that despite the use of antimicrobials, certain L. monocytogenes strains could be capable of growing under storage-abuse conditions. Growth kinetics data could be useful for establishing a shelf life date label protocol under different handling scenarios.  相似文献   

14.
A nonproteolytic, psychrotrophic Clostridium isolate, designated strain OMFRI1, was recovered from cook-in-bag turkey breasts (CIBTB) that displayed an intense pink discoloration and an off-odor following extended refrigerated storage. The viability of strain OMFRI1 in CIBTB containing sodium diacetate (at 0, 0.25, and 0.5%) and/or sodium lactate (at 0, 1.25, and 2.5%) was subsequently evaluated. Raw CIBTB batter was inoculated with 9 to 30 spores of strain OMFRI1 per g, vacuum packaged, cooked to an instantaneous internal temperature of 71.1 degrees C, chilled, and incubated at 4 degrees C for up to 22 weeks. In the absence of food-grade antimicrobial agents, spoilage (i.e., an off-odor) occurred within 6 weeks, and anaerobic plate counts reached 6.6 log10 CFU/g. The CIBTB containing sodium diacetate (0.25%) and that containing sodium lactate (1.25%) required 12 weeks for spoilage to occur and for anaerobic plate counts to reach 7.0 and 6.0 log10 CFU/g, respectively. When sodium diacetate (0.25%) and sodium lactate (1.25%) were used in combination, no off-odor was detected and anaerobic plate counts did not exceed 2.3 log10 CFU/g over 22 weeks of storage at 4 degrees C. In related experiments, sodium diacetate (at 0, 0.25, and 0.5%), sodium lactate (at 0, 1.25, and 2.5%), and combinations of both ingredients were evaluated in uninoculated CIBTB incubated at 25 degrees C for up to 22 days. In the absence of antimicrobial agents and in CIBTB containing sodium diacetate (0.5%), spoilage occurred within 8 days and anaerobic plate counts reached 6.8 and 6.6 log10 CFU/g, respectively. Samples of CIBTB containing sodium lactate (2.5%) showed signs of spoilage within 22 days, and anaerobic plate counts for these samples ranged from < or = 1.0 to 6.3 log10 CFU/g. In CIBTB containing both sodium lactate (2.5%) and sodium diacetate (0.25%), spoilage was not evident and anaerobic plate counts were < or = 1.0 log10 CFU/g within 22 days. These data validate the efficacy of sodium lactate and sodium diacetate in extending the shelf life of CIBTB.  相似文献   

15.
The antilisterial activity of sodium lactate (SL) and sodium diacetate (SD) was evaluated in a frankfurter formulation and in combination with a dipping treatment into solutions of lactic acid or acetic acid after processing and inoculation. Pork frankfurters were formulated with 1.8% SL or 0.25% SD or combinations of 1.8% SL with 0.25 or 0.125% SD. After processing, frankfurters were inoculated (2 to 3 log CFU/cm2) with a 10-strain composite of Listeria monocytogenes and left undipped or were dipped (2 min) in 2.5% solutions of lactic acid or acetic acid (23 +/- 2 degrees C) before vacuum packaging and storage at 10 degrees C for 40 days. Total microbial populations and L. monocytogenes, lactic acid bacteria, and yeasts and molds were enumerated during storage. Sensory evaluations also were carried out on frankfurters treated and/or formulated with effective antimicrobials. The combination of 1.8% SL with 0.25% SD provided complete inhibition of L. monocytogenes growth throughout storage. Dipping in lactic acid or acetic acid reduced initial populations by 0.7 to 2.1 log CFU/cm2, but during storage (12 to 20 days), populations on dipped samples without antimicrobials in the formulation reached 5.5 to 7.9 log CFU/cm2. For samples containing single antimicrobials and dipped in lactic acid or acetic acid, L. monocytogenes growth was completely inhibited or reduced over 12 and 28 days, respectively, whereas final populations were lower (P < 0.05) than those in undipped samples of the same formulations. Bactericidal effects during storage (reductions of 0.6 to 1.0 log CFU/ cm2 over 28 to 40 days) were observed in frankfurters containing combinations of SL and SD that were dipped in organic acid solutions. Inclusion of antimicrobials in the formulation and/or dipping the product into organic acid solutions did not affect (P > 0.05) the flavor and overall acceptability of products compared with controls. The results of this study may be valuable to meat processors as they seek approaches for meeting new regulatory requirements in the United States.  相似文献   

16.
The viability of Listeria monocytogenes was monitored on frankfurters containing added potassium lactate that were obtained directly from a commercial manufacturer. Eight links (ca. 56 g each) were transferred aseptically from the original vacuum-sealed bulk packages into nylon-polyethylene bags. Each bag then received a 4-ml portion of a five-strain mixture of the pathogen. Frankfurters containing 2.0 or 3.0% potassium lactate were evaluated using 20 CFU per package, and frankfurters containing 3.0% potassium lactate were evaluated using 500 CFU per package. The packages were vacuum-sealed and stored at 4 or 10 degrees C for up to 90 or 60 days, respectively. During storage at 4 degrees C, pathogen numbers remained at about 1.6 log10 CFU per package over 90 days in packages containing frankfurters with 2.0% potassium lactate that were inoculated with about 20 CFU. In packages containing frankfurters with 3.0% potassium lactate that were inoculated with about 20 CFU and stored at 4 degrees C, pathogen numbers remained at about 1.4 log10 CFU per package over 90 days. In packages containing frankfurters with 3.0% potassium lactate that were inoculated with about 500 CFU and stored at 4 degrees C, pathogen numbers remained at about 2.4 log10 CFU per package over 90 days. However, in the absence of any added potassium lactate, pathogen numbers increased to 4.6 and 5.0 log10 CFU per package after 90 days of storage at 4 degrees C for starting levels of 20 and 500 CFU per package, respectively. During storage at 10 degrees C, pathogen numbers remained at about 1.4 log10 CFU per package over 60 days in packages containing frankfurters with 2.0% potassium lactate that were inoculated with about 20 CFU. In packages containing frankfurters with 3.0% potassium lactate that were inoculated with about 20 CFU and stored at 10 degrees C, pathogen numbers remained at about 1.1 log10 CFU per package over 60 days of storage. In the absence of any added potassium lactate, pathogen numbers increased to 6.5 log10 CFU per package after 28 days and then declined to 5.0 log10 CFU per package after 60 days of storage at 10 degrees C. In packages containing frankfurters with 3.0% potassium lactate that were inoculated with about 500 CFU per package, pathogen numbers remained at about 2.4 log10 CFU per package over 60 days of storage at 10 degrees C, whereas in the absence of any added potassium lactate, pathogen numbers increased to about 6.6 log10 CFU per package within 40 days and then declined to about 5.5 log10 CFU per package after 60 days of storage. The viability of L. monocytogenes in frankfurter packages stored at 4 and 10 degrees C was influenced by the pH and the presence or levels of lactate but not by the presence or levels of indigenous lactic acid bacteria or by the proximate composition of the product. These data establish that the addition of 2.0% (P < 0.0004) or 3.0% (P < 0.0001) potassium lactate as an ingredient in frankfurters can appreciably enhance safety by inhibiting or delaying the growth of L. monocytogenes during storage at refrigeration and abuse temperatures.  相似文献   

17.
The objective of this study was to identify concentrations of sorbate, benzoate, and propionate that prevent the growth of Listeria monocytogenes on sliced, cooked, uncured turkey breast and cured ham. Sixteen test formulations plus a control formulation for each product type were manufactured to include potassium sorbate, sodium benzoate, or sodium propionate, used alone and combined (up to 0.3% [wt/wt]), or with sodium lactate-sodium diacetate combinations. Products were inoculated with L. monocytogenes (5 log CFU/100-g package) and stored at 4, 7, or 10 degrees C for up to 12 weeks, and triplicate samples per treatment were assayed biweekly by plating on modified Oxford agar. Data showed that 0.1% benzoate, 0.2% propionate, 0.3% sorbate, or a combination of 1.6% lactate with 0.1% diacetate prevented the growth of L. monocytogenes on ham stored at 4 degrees C for 12 weeks, compared with greater than a 1-log increase at 4 weeks for the control ham without antimicrobials. When no nitrite was included in the formulation, 0.2% propionate used alone, a combination of 0.1% propionate with 0.1% sorbate, or a combination of 3.2% lactate with 0.2% diacetate was required to prevent listerial growth on the product stored at 4 degrees C for 12 weeks. Inhibition was less pronounced when formulations were stored at abuse temperatures. When stored at 7 degrees C, select treatments delayed listerial growth for 4 weeks but supported significant growth at 8 weeks. All treatments supported more than a 1-log increase in listerial populations when stored at 10 degrees C for 4 weeks. These results verify that antimycotic agents inhibit the growth of L. monocytogenes on ready-to-eat meats but aremore effective when used in combination with nitrite.  相似文献   

18.
Surface pasteurization was examined in combination with low-phenolic antimicrobial extracts derived from liquid smoke to inhibit and prevent the growth of Listeria monocytogenes during the shelf life of ready-to-eat meats. In preliminary trials with retail frankfurters, one smoke derivative (2-min dip) produced a 0.3-log reduction of L. monocytogenes and a 1-min in-bag pasteurization (73.9 degrees C) produced a 2.9-log reduction, whereas a combination of the two treatments produced a 5.3-log reduction that resulted in no detectable Listeria by week 3 under accelerated shelf-life conditions (10 degrees C). In trials with frankfurters manufactured without lactate or diacetate that were treated with a shortened 1-s dip, this smoke extract and one with reduced smoke flavor and color both produced a > 4.5-log reduction of L. monocytogenes on frankfurters when heated at 73.9 degrees C for 1 min, with no recoverable Listeria detected for 10 weeks when stored at 6.1 degrees C. When deli turkey breast chubs manufactured without lactate, diacetate, or nitrite were treated with a 1-s dip in combination with radiant-heat pasteurization (270 degrees C), growth of L. monocytogenes was retarded but not prevented. However, in a similar study in which smoke extract treatment of deli turkey breast was combined with in-bag postpackage pasteurization (water submersion at 93.3 degrees C), a 60-, 45-, or even 30-s heat treatment resulted in a 2- to 3-log reduction of L. monocytogenes, with no growth on the meat during 10 weeks of storage at 6.1 degrees C. These findings indicate that reduced-acid low-phenolic antimicrobial liquid smoke derivatives combined with surface pasteurization are capable of reducing or preventing growth of L. monocytogenes to meet the criteria for the U.S. Department of Agriculture Food Safety and Inspection Service Alternative 1 process for ready-to-eat deli meat products manufactured without lactate or diacetate.  相似文献   

19.
ABSTRACT: The effectiveness of whey protein isolate (WPI) coatings incorporated with grape seed extract (GSE), nisin (N), malic acid (MA), and ethylenediamine tetraacetic acid (EDTA) and their combinations to inhibit the growth of Listeria monocytogenes, E. coli O157:H7, and Salmonella typhimurium were evaluated in a turkey frankfurter system through surface inoculation (approximately 106 CFU/g) of pathogens. The inoculated frankfurters were dipped into WPI film forming solutions both with and without the addition of antimicrobial agents (GSE, MA, or N and EDTA, or combinations). Samples were stored at 4 °C for 28 d. The L. monocytogenes population (5.5 log/g) decreased to 2.3 log/g after 28 d at 4 °C in the samples containing nisin (6000 IU/g) combined with GSE (0.5%) and MA (1.0%). The S. typhimurium population (6.0 log/g) was decreased to approximately 1 log cycles after 28 d at 4 °C in the samples coated with WPI containing a combination of N, MA, GSE, and EDTA. The E. coli O157:H7 population (6.15 log/g) was decreased by 4.6 log cycles after 28 d in samples containing WPI coating incorporated with N, MA, and EDTA. These findings demonstrated that the use of an edible film coating containing nisin, organic acids, and natural extracts is a promising means of controlling the growth and recontamination of L. monocytogenes, S. typhimurium, and E. coli O157:H7 in ready‐to‐eat poultry products.  相似文献   

20.
Postprocessing contamination of cured meat products with Listeria monocytogenes during slicing and packaging is difficult to avoid, and thus, hurdles are needed to control growth of the pathogen during product storage. This study evaluated the influence of antimicrobials, included in frankfurter formulations, on L. monocytogenes populations during refrigerated (4 degrees C) storage of product inoculated (10(3) to 10(4) CFU/cm2) after peeling of casings and before vacuum packaging. Frankfurters were prepared to contain (wt/wt) sodium lactate (3 or 6%, as pure substance of a liquid, 60% wt/wt, commercial product), sodium acetate (0.25 or 0.5%), or sodium diacetate (0.25 or 0.5%). L. monocytogenes populations (PALCAM agar and Trypticase soy agar plus 0.6% yeast extract [TSAYE]) exceeded 10(6) CFU/cm2 in inoculated controls at 20 days of storage. Sodium lactate at 6% and sodium diacetate at 0.5% were bacteriostatic, or even bactericidal, throughout storage (120 days). At 3%, sodium lactate prevented pathogen growth for at least 70 days, while, in decreasing order of effectiveness, sodium diacetate at 0.25% and sodium acetate at 0.5 and 0.25% inhibited growth for 20 to 50 days. Antimicrobials had no effect on product pH, except for sodium diacetate at 0.5%, which reduced the initial pH by approximately 0.4 U. These results indicate that concentrations of sodium acetate currently permitted by the U.S. Department of Agriculture-Food Safety and Inspection Service (USDA-FSIS) (0.25%) or higher (0.5%) may control growth of L. monocytogenes for approximately 30 days, while currently permitted levels of sodium lactate (3%) and sodium diacetate (0.25%) may be inhibitory for 70 and 35 to 50 days, respectively. Moreover, levels of sodium lactate (6%) or sodium diacetate (0.5%) higher than those presently permitted by the USDA-FSIS may provide complete control at 4 degrees C of growth (120 days) of L. monocytogenes introduced on the surface of frankfurters during product packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号