首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
以偕胺肟纤维为基体纤维,与三氯化钐溶液反应,生成偕胺肟-钐(Ⅲ)配合物纤维,用扫描电子显微镜观察偕胺肟-钐(Ⅲ)配合物纤维的形貌.研究偕胺肟-钐(Ⅲ)配合物纤维的荧光性质,结果显示:在eλx=300 nm激发波长下,偕胺肟-钐(Ⅲ)配合物纤维在475 nm处出现荧光发射峰,且随配合物纤维中钐含量的增加而发生改变.对不同钐含量的配合物纤维样本进行了力学性能测试,并与原纤维(PAN)、偕胺肟纤维进行了比较.找出了荧光强度强、力学性能好的钐含量配合物纤维的最佳工艺条件,为荧光纤维的实际应用提供理论依据.  相似文献   

2.
偕肟胺螯合纤维循环复用处理镀铜废液的研究   总被引:1,自引:0,他引:1  
对偕肟胺螯合纤维循环复用处理镀铜废液刊物了系统的研究,研究结果表明:利用聚丙烯腈纤维(PAN)与盐酸羟胺发生反应生成偕肟胺基的螯合纤维(用L表示)对铜离子有良好的吸附,并通过实验确定出L对Cu^2 吸附的最佳条件参数:温度、时间、pH浓度、再生条件以及累积吸附性能,从而得到偕肟胺螯合纤维循环复用处理镀铅废液的最佳工艺,为电镀行业的废水处理提供一种新的有效的方法。  相似文献   

3.
以杨絮纤维素(PF)为基体,以硝酸铈铵为引发剂,引发丙烯腈在纤维素的羟基上自由基聚合而制备杨絮纤维-聚丙烯腈接枝共聚物(PF-g-PAN),用盐酸羟胺将聚丙烯腈中的氰基偕胺肟化,制备了聚偕胺肟功能化杨絮纤维(PF-g-PAO)。分析了PF-g-PAN、PF-g-PAO纤维的形态结构,研究了在不同pH的溶液中PF-g-PAO对重铬酸钾溶液中铬及混合重金属离子的吸附行为和机理。利用偕胺肟基团对银离子的螯合作用,制备了偕胺肟杨絮纤维纳米银复合材料(PF-g-PAO/AgNPs),研究了PF-g-PAO对Ag(Ⅰ)的吸附还原机理及复合材料PF-g-PAO/AgNPs对对硝基苯酚(4-NP)还原反应的催化作用。在4-NP 0.3mmol/L、NaBH4264mmol/L、催化剂0.25mg/mL的催化条件下,PF-g-PAO/AgNPs表现出较好的催化活性,催化还原速率常数为1.87s~(-1)·g~(-1)。  相似文献   

4.
以腈纶纤维(PAN)为原料,与羟胺溶液反应,将纤维侧链上的腈基转化为偕胺肟基(NH2-C=N-OH).然后以这种功能化的腈纶纤维为基体.经配位反应将Fe^3+螯合于纤维表面,形成偕胺肟合铁(III)吸附纤维.再以此为吸附材料,吸附废水中的分散红60#染料.通过实验摸索确定了螯合纤维吸附分散红60#的最佳工艺条件为:pH=5.5,吸附时间为50min,温度为45℃.  相似文献   

5.
本研究以偕胺肟纤维为原料与Fe2(SO4)3溶液反应,制备偕胺肟-Fe(Ⅲ)配合物纤维(用AOFs-Fe(Ⅲ)表示).以醋酸和正丁醇合成乙酸丁酯为体系,考察AOFs-Fe(Ⅲ)对酯化合成的催化性能.探索影响AOFs-Fe(Ⅲ)催化酯化活性的工艺条件:物料配比、反应时间、反应温度等;研究单位质量AOFs-Fe(Ⅲ)的生产能力、重复使用寿命及再生能力等.结果表明,最佳催化条件为加热回流反应下原料摩尔比(乙酸/正丁醇)为3∶1、反应时间为3h;AOFs-Fe(Ⅲ)单次催化乙酸丁酯产量12.8g/g,AOFs-Fe(Ⅲ)能重复使用且能够再生;AOFs-Fe(Ⅲ)安全无毒,易于产物分离,是一种绿色的酯化反应催化剂.  相似文献   

6.
通过生物培养的方式制备了细菌纤维素(BC),并对其进行偕胺肟化改性制成了偕胺肟化细菌纤维素(AOBC)纳米纤维膜。对纳米纤维膜的表观形态和热力学性能进行测试,利用Cu~(2+)和Zn~(2+)溶液对纳米纤维膜的金属离子吸附性能进行研究。结果表明,改性后的AOBC纳米纤维膜的力学性能有所提高,且具有优异的离子吸附性能。AOBC纳米纤维膜对于Cu~(2+)和Zn~(2+)的最大吸附量分别为111.20mg/g和108.09mg/g。  相似文献   

7.
将偕胺肟改性PAN纤维与Fe(bpy)32+溶液进行反应制备非均相Fenton催化剂,使用UV-vis DRS吸收光谱对其光吸收特性进行研究,并将其应用于罗丹明B的降解反应过程中,分别考察了Fe(bpy)32+负载量及溶液pH值对染料脱色率的影响.结果表明:反应温度和溶液中Fe(bpy)32+浓度的增加均能够促进偕胺肟改性PAN纤维与Fe(bpy)32+之间的反应,所得催化剂在可见光区具有明显的吸收性能;偕胺肟基团能够通过配位作用改变Fe(bpy)32+的光化学性质,使得催化剂在可见光下具有较高的催化活性,而且其活性与Fe(bpy)32+负载量密切相关,当负载量为0.29 mmol/g时其催化活性最高;此外,溶液pH值的升高会导致其催化活性有所降低.  相似文献   

8.
使用改性偕胺肟纤维为载体,制备了偕胺肟纤维-钯(Ⅱ)配合物[AOFs-Pd(Ⅱ)].采用SEM、XRD等手段对其结构进行了表征,并考察了AOFs-Pd(Ⅱ)对1-溴萘和苯乙烯Heck反应的催化性能及反应工艺条件对催化性能的影响.结果显示:在120℃、K2CO3为碱试剂、DMF/H2O=1∶1为溶剂,AOFs-Pd(Ⅱ)用量为0.12wt%,反应8h时,产率达88%.催化剂易于从反应体系中分离,并且可以重复使用6次.  相似文献   

9.
采用胶体晶模板法制备了三维有序大孔材料,采用表面引发原子转移自由基聚合(SI-ATRP)方法在3DOM CLPS孔壁上可控接枝聚丙烯腈(PAN)链段,继而与盐酸羟胺反应对其进行偕胺肟化,从而制备得到一种新型的偕胺肟基螯合树脂,并对其进行了FT-IR、SEM表征.研究了不同的接枝时间对接枝量的影响,随着时间的延长,接枝量不断增大.并研究了偕胺肟基三维有序大孔螯合树脂(3DOM CLPS-g-PAO)对汞离子的吸附性能,当接枝量为51.89%时,3DOM CLPS-g-PAO对汞离子的最佳吸附量达4.95 mmol/g.  相似文献   

10.
以偕胺肟化的聚丙烯腈纤维为载体,制备了偕胺肟纤维-钯(Ⅱ)配合物[AOFs-Pd(Ⅱ)].考察了AOFsPd(Ⅱ)催化苯硼酸频哪醇酯与卤代芳烃Suzuki反应的催化性能.结果表明:在室温下,乙醇/水(V/V=2∶1,30mL)为溶剂,碳酸钾(10mmol)为碱,AOFs-Pd(Ⅱ)(0.1g)、苯硼酸频哪醇酯(6mmol)与碘苯(5mmol)反应时,产率能达到90%以上.而且本反应对于溴代苯及其衍生物和溴代杂环芳烃也具有良好的适应性.反应后催化剂易从反应体系中分离,并可以重复使用6次.  相似文献   

11.
采用去金属离子处理后的硫酸盐漂白苇浆,研究了苇浆纤维对Ca^2+离子的吸附动力学及其影响因素.结果表明:在Ca^2+初始浓度较低时,漂白化学浆的吸附容量随着Ca^2+初始浓度的增加快速提高,当[Ca^2+]达到0.2 mmol/L时,吸附容量基本保持不变,说明本苇浆与Ca^2+间吸附为化学吸附.在pH 7.5、温度25℃条件下,苇浆纤维对Ca^2+的饱和吸附量为0.024 mmol/g,符合Langmuir方程等温吸附线,且为单分子吸附.随着pH的升高,苇浆纤维对Ca2+的吸附量同步增加,在pH值7以后苇浆表面的游离羧基将完全被Ca^2+离子吸附;苇浆纤维对Ca2+的吸附属放热吸附,提高温度将使苇浆纤维对Ca^2+的吸附量略有降低.  相似文献   

12.
改性活性炭纤维在含磷废水中的应用   总被引:1,自引:0,他引:1  
为了提高活性炭纤维(ACF)对水体中磷的吸附性能,采用硫酸亚铁溶液对其进行改性,并用正交实验法分析得到最佳改性条件为:pH值为3,FeSO4·7H2O的质量浓度为100kg/m3,FeSO4·7H2O和ACF的质量比为2.5,反应时间3h.将改性后的ACF对模拟含磷废水进行静态吸附,测定了吸附等温线,研究了吸附时间、投加量、pH值对处理效果的影响,实验结果表明,改性后ACF对磷的吸附效果较好,去除率可以达到99%.  相似文献   

13.
活性炭纤维处理对氟硝基苯废水的研究   总被引:4,自引:0,他引:4  
采用活性炭纤维(ACF)处理对氟硝基苯(PFNB)模拟废水,通过静态和动态吸附研究,测定了吸附等温线动态穿透曲线,并且研究了pH、温度、吸附平衡时间对处理效果的影响.结果表明,溶液pH在3~9范围内对吸附效率影响不大;温度升高,吸附效率有所降低;吸附时间存在最佳值,最佳吸附时间5 min,继续增加吸附时间,吸附效率略有下降,说明有解吸现象,也说明ACF易于脱附再生.吸附饱和的活性炭纤维用过热水蒸汽再生,重复使用4次,吸附效率无明显变化.活性炭纤维对PFNB的吸附容量大,吸附速率快,再生条件温和.  相似文献   

14.
研究N-羧甲基壳聚糖(NCMC)对Ca^2 ,Fe^2 的吸附性能,探讨了时间、pH对吸附性质的影响。结果表明NCMC对Ca^2 ,Fe^2 的络合能力随pH的升高而增大。当pH=10时NCMC对Ca^2 的最大吸附量为0.6575mmol/g;pH=6时NCMC对Fe^2 的最大吸附量为2.3920mmol/g。NCMC对Fe^2 的吸附能力大于Ca^2 ,并通过IR和UV光谱证实了NCMC与Ca^2 ,Fe^2 的络合作用。  相似文献   

15.
海绵状生物质基阴离子交换纤维制备与吸附性能研究   总被引:1,自引:0,他引:1  
以生物质海绵-丝瓜络纤维为原料,以吡啶为催化剂,二甲胺作为引入基团对其进行接枝共聚,制备海绵状生物质基阴离子交换纤维。根据产品对溶液中硝酸根的去除效果,探讨了最佳制备工艺,以及产品投加量、pH值、反应时间等因素对NO3-去除率的影响。结果表明,环氧氯丙烷用量、催化反应温度和催化时间为影响产品吸附性能的主要因素;对于250mg/L的硝酸根溶液,静态吸附1h,投加量为0.1g时,产品对硝酸根离子的吸附量达到112.26mg/g。  相似文献   

16.
离子交换纤维动态吸附和解吸桑叶多糖的研究   总被引:1,自引:0,他引:1  
在动态条件下,用强碱性阴离子交换纤维分离纯化桑叶中的多糖,分别研究了流速、pH值、上柱液体积和浓度对多糖动态吸附和解吸的影响,并计算了动态吸附活化能.结果表明:在初始质量浓度为0.38 mg/mL,pH=6,体积为30 mL,流速为0.5 mL/m in的条件下,交换纤维对多糖的吸附效果最佳,吸附活化能为37.45 kJ/mol,饱和吸附量为232.22 mg/g;而使用体积分数为60%的乙醇溶液为解吸剂,pH=1,解吸剂体积与纤维床体积比例为5时,解吸效果较好.实验结果表明用离子交换纤维提取纯化多糖的方法可行.  相似文献   

17.
用正交法考察了各因素对浸取纯化三七总皂苷的影响,确立了离子交换纤维纯化三七总皂苷的最佳工艺.结果表明:浸取三七总皂苷的最佳条件为温度65℃,时间2 h,浸提剂体积20mL/g(三七粉),浸提次数3次,浸提率7.68%;在质量浓度为1.152 mg.mL-1条件下,强碱阴离子交换纤维静态吸附三七总皂苷的最佳条件是温度65℃,pH=8,皂苷体积250 mL/g(纤维),吸附率为91.02%;吸附在强碱阴离子交换纤维上的三七总皂苷的静态解吸的最佳条件是pH=1,温度70℃,解吸剂质量分数60%和解吸剂体积900 mL/g(饱和纤维),解吸率92.21%.上述结果表明用强碱阴离子交换纤维提取纯化三七总皂苷是可行的.  相似文献   

18.
以自制的壳聚糖树脂生成装置,采用改进的滴加成球法,以环氧氯丙烷做交联剂,合成新型壳聚糖交联树脂.研究树脂对Pb(Ⅱ)的吸附效果,探讨了溶液pH、吸附时间、温度、初始浓度等因素对其吸附性能的影响及吸附热力学和动力学.结果表明,pH对树脂吸附Pb(Ⅱ)的影响较大;在pH=6,温度30℃,吸附4.5 h时,最大吸附容量可达105.0 mg/g;用Temkin等温线模型和Pseudo second-order动力学模型对树脂的吸附过程进行线性拟合,相关系数R2分别为0.999 5和0.992 6,表明新型交联树脂对Pb(Ⅱ)的吸附是物理吸附和化学吸附共同作用的结果.  相似文献   

19.
An enhanced adsorption and desorption procedure of Cu(II) onto green synthesized acrylic acid grafted polytetrafluoroethylene fiber(i.e. AA-PTFE) was conducted with various chemical methods. The results show that the optimal adsorption condition is in acetic acid, sodium acetate(HAc-Na Ac) buffer solution(p H=6.80) with the initial concentration of 0.2 mg/mL. The process is very fast initially and equilibrium time is 12 h with a high Cu(II) uptake of 112.26 mg/g at 298 K. Various thermodynamic parameters indicate that the adsorption process is spontaneous and endothermic in nature. In the elution test, 2 mol/L HCl solution achieves satisfactory elution rate and shows no significant decrease after 5 adsorption-desorption cycle, which indicates that AA-PTFE can be regenerated and reused, and due to which a reasonable amount of nondegradable polymer material is avoided in industrial use. Finally, PTFE, AA-PTFE fiber, and Cu(II) loaded AA-PTFE fiber were characterized with various techniques, including IR spectroscopic technique, SEM and EDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号