首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Test setup limitations, such as noise and parasitics, increasingly impede repeatable and accurate linearity measurements in high-volume production testing of high-precision data converters. Model-based testing has been shown to reduce the adverse effects of noise [14].In this work, we present two enhancements of the linear model-based approach: one is a change of the modeling strategy in order to account for measurement errors induced, for example, by parasitics associated with the device contactor, and another is a Design-for-Test feature that significantly improves the models ability to reduce the effect of measurement noise on the accuracy of the test outcome.The authors acknowledge the support by Analog Devices B.V., Limerick, Ireland and Enterprise Ireland under the Strategic Research Grant ST/00/26.Carsten Wegener has been awarded the academic degree of a Diplom-Ingenieur in Electronic Circuits and Systems by the Technical University of Dresden, Germany, in 1997. During a period of two years, 1996 through 1998, he attended the lecture series for the Vordiplom in Mathematics at Humboldt-University at Berlin, Germany.In Spring 1998, he moved permanently to Ireland, where he started to work with the Test Department of Analog Devices B.V. in Limerick. In Autumn of the same year he took up his PhD-studies with Dr M.P. Kennedy in the area of model-based testing of mixed-signal integrated circuits. He has been awarded the PhD degree by the National University of Ireland in December 2003.He has contributed to numerous conferences, publishing works in areas of nonlinear oscillator dynamics and mixed-signal testing. In Ireland, he has taught MATLAB courses to design and test engineers at Analog Devices B.V., and graduate courses on Digital Design-for-Test and Mixed-signal Test and Testability at the Department of Microelectronic Engineering, University College Cork.Michael Peter Kennedy received the B.E. degree in electronics from the National University of Ireland in 1984, and the M.S. and Ph.D. degrees from the University of California at Berkeley (UC Berkeley) in 1987 and 1991, respectively, for his contributions to the study of neural networks and nonlinear dynamics.He worked as a Design Engineer with Philips Electronics, a Postdoctoral Research Engineer with the Electronics Research Laboratory, UC Berkeley, and as a Professeur Invité with the EPFL, Switzerland. He returned to University College Dublin in 1992 as a College Lecturer in the Department of Electronic and Electrical Engineering. He was appointed Professor of Microelectronic Engineering at University College Cork in 2000.He has published 200 articles in the area of nonlinear circuits and systems and has taught courses on nonlinear dynamics and chaos. His research interests are nonlinear circuits and systems for applications in communications and signal processing. Since 1995 he has been active in research into algorithms for mixed-signal testing. Since 1994, he has led international basic and applied research projects on chaotic communications valued at over USD 2M.Dr. Kennedy was elected a Fellow of the IEEE in 1998. He received the Third Millenium Medal from the IEEE in 2000, the IEEE Circuits and Systems Society Golden Jubilee Medal, and the inaugural Parsons Award for excellence in Engineering Sciences from the Royal Irish Academy in 2001.  相似文献   

2.
Video segmentation is a key operation in MPEG-4 content-based coding systems. For real-time applications, hardware implementation of video segmentation is inevitable. In this paper, we propose a hybrid morphology processing unit architecture for real-time moving object segmentation systems, where a prior effective moving object segmentation algorithm is implemented. The algorithm is first mapped to pixel-based operations and morphological operations, which makes the hardware implementation feasible. Then the high computation load, which is more than 4.2 GOPS, can be overcome with a dedicated morphology engine and a programmable morphology PE array. In addition, the hardware cost, memory size, and memory bandwidth can be reduced with the partial-result-reuse concept. This chip is designed with TSMC 0.35 μm 1P4M technology, and can achieve the processing speed of 30 QCIF frames or 7,680 morphological operations per second at 26 MHz. Simulation shows that the proposed hardware architecture is efficient in both hardware complexity and memory organization. It can be integrated into any content-based video processing and encoding systems. Shao-Yi Chien was born in Taipei, Taiwan, R.O.C., in 1977. He received the B.S. and Ph.D. degrees from the Department of Electrical Engineering, National Taiwan University (NTU), Taipei, in 1999 and 2003, respectively. During 2003 to 2004, he was a research staff in Quanta Research Institute, Tao Yuan Shien, Taiwan. In 2004, he joined the Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, as an Assistant Professor. His research interests include video segmentation algorithm, intelligent video coding technology, image processing, computer graphics, and associated VLSI architectures. Bing-Yu Hsieh was born in Taichung, Taiwan, in 1979. He received the B.S.E.E and M.S.E.E degrees from National Taiwan University (NTU), Taipei, in 2001 and 2003, respectively. He joined MediaTek, Inc., Hsinchu, Taiwan, in 2003, where he develops integrated circuits related to multimedia systems and optical storage devices. His research interests include object tracking, video coding, baseband signal processing, and VLSI design. Yu-Wen Huang was born in Kaohsiung, Taiwan, in 1978. He received the B.S. degree in electrical engineering and Ph. D. degree in the Graduate Institute of Electronics Engineering from National Taiwan University (NTU), Taipei, in 2000 and 2004, respectively. He joined MediaTek, Inc., Hsinchu, Taiwan, in 2004, where he develops integrated circuits related to video coding systems. His research interests include video segmentation, moving object detection and tracking, intelligent video coding technology, motion estimation, face detection and recognition, H.264/AVC video coding, and associated VLSI architectures. Shyh-Yih Ma received the B.S.E.E, M.S.E.E, and Ph.D. degrees from National Taiwan University in 1992, 1994, and 2001, respectively. He joined Vivotek, Inc., Taipei County, in 2000, where he developed multimedia communication systems on DSPs. His research interests include video processing algorithm design, algorithm optimization for DSP architecture, and embedded system design. Liang-Gee Chen was born in Yun-Lin, Taiwan, in 1956. He received the BS, MS, and Ph.D degrees in Electrical Engineering from National Cheng Kung University, in 1979, 1981, and 1986, respectively. He was an Instructor (1981–1986), and an Associate Professor (1986–1988) in the the Department of Electrical Engineering, National Cheng Kung University. In the military service during 1987 and 1988, he was an Associate Professor in the Institute of Resource Management, Defense Management College. From 1988, he joined the Department of Electrical Engineering, National Taiwan University. During 1993 to 1994 he was Visiting Consultant of DSP Research Department, AT&T Bell Lab, Murray Hill. At 1997, he was the visiting scholar of the Department of Electrical Engineering, University, of Washington, Seattle. Currently, he is Professor of National Taiwan University. From 2004, he is also the Executive Vice President and the General Director of Electronics Research and Service Organization (ERSO) in the Industrial Technology Research Institute (ITRI). His current research interests are DSP architecture design, video processor design, and video coding system. Dr. Chen is a Fellow of IEEE. He is also a member of the honor society Phi Tan Phi. He was the general chairman of the 7th VLSI Design CAD Symposium. He is also the general chairman of the 1999 IEEE Workshop on Signal Processing Systems: Design and Implementation. He serves as Associate Editor of IEEE Trans. on Circuits and Systems for Video Technology from June 1996 until now and the Associate Editor of IEEE Trans. on VLSI Systems from January 1999 until now. He was the Associate Editor of the Journal of Circuits, Systems, and Signal Processing from 1999 until now. He served as the Guest Editor of The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, November 2001. He is also the Associate Editor of the IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing. From 2002, he is also the Associate Editor of Proceedings of the IEEE. Dr. Chen received the Best Paper Award from ROC Computer Society in 1990 and 1994. From 1991 to 1999, he received Long-Term (Acer) Paper Awards annually. In 1992, he received the Best Paper Award of the 1992 Asia-Pacific Conference on Circuits and Systems in VLSI design track. In 1993, he received the Annual Paper Award of Chinese Engineer Society. In 1996, he received the Out-standing Research Award from NSC, and the Dragon Excellence Award for Acer. He is elected as the IEEE Circuits and Systems Distinguished Lecturer from 2001–2002.  相似文献   

3.
IEEE 802.11 Wireless LAN (WLAN) has become a prevailing solution for broadband wireless Internet access while the Transport Control Protocol (TCP) is the dominant transport-layer protocol in the Internet. Therefore, it is critical to have a good understanding of the TCP dynamics over WLANs. In this paper, we conduct rigorous and comprehensive modeling and analysis of the TCP performance over the emerging 802.11e WLANs, or more specifically, the 802.11e Enhanced Distributed Channel Access (EDCA) WLANs. We investigate the effects of minimum contention window sizes and transmission opportunity (TXOP) limits (of both the AP and stations) on the aggregate TCP throughput via analytical and simulation studies. We show that the best aggregate TCP throughput performance can be achieved via AP’s contention-free access for downlink packet transmissions and the TXOP mechanism. We also study the effects of some simplifying assumptions used in our analytical model, and simulation results show that our model is reasonably accurate, particularly, when the wireline delay is small and/or the packet loss rate is low.
Daji QiaoEmail:

Jeonggyun Yu   received his B.E. degree in School of Electronic Engineering from Korea University, Seoul, Korea in 2002. He is currently working toward his Ph.D. in the School of Electrical Engineering at Seoul National University (SNU), Seoul, Korea. His research interests include QoS support, algorithm development, performance evaluation for wireless networks, in particular, IEEE 802.11 wireless local-area networks (WLANs). He is a student member of IEEE. Sunghyun Choi   is currently an associate professor at the School of Electrical Engineering, Seoul National University (SNU), Seoul, Korea. Before joining SNU in September 2002, he was with Philips Research USA, Briarcliff Manor, New York, USA as a Senior Member Research Staff and a project leader for three years. He received his B.S. (summa cum laude) and M.S. degrees in electrical engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1992 and 1994, respectively, and received Ph.D. at the Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor in September, 1999. His current research interests are in the area of wireless/ mobile networks with emphasis on wireless LAN/MAN/PAN, next-generation mobile networks, mesh networks, cognitive radios, resource management, data link layer protocols, and cross-layer approaches. He authored/coauthored over 120 technical papers and book chapters in the areas of wireless/mobile networks and communications. He has co-authored (with B. G. Lee) a book “Broadband Wireless Access and Local Networks: Mobile WiMAX and WiFi,” Artech House, 2008. He holds 15 US patents, nine European patents, and seven Korea patents, and has tens of patents pending. He has served as a General Co-Chair of COMSWARE 2008, and a Technical Program Committee Co-Chair of ACM Multimedia 2007, IEEE WoWMoM 2007 and IEEE/Create-Net COMSWARE 2007. He was a Co-Chair of Cross-Layer Designs and Protocols Symposium in IWCMC 2006, 2007, and 2008, the workshop co-chair of WILLOPAN 2006, the General Chair of ACM WMASH 2005, and a Technical Program Co-Chair for ACM WMASH 2004. He has also served on program and organization committees of numerous leading wireless and networking conferences including IEEE INFOCOM, IEEE SECON, IEEE MASS, and IEEE WoWMoM. He is also serving on the editorial boards of IEEE Transactions on Mobile Computing, ACM SIGMOBILE Mobile Computing and Communications Review (MC2R), and Journal of Communications and Networks (JCN). He is serving and has served as a guest editor for IEEE Journal on Selected Areas in Communications (JSAC), IEEE Wireless Communications, Pervasive and Mobile Computing (PMC), ACM Wireless Networks (WINET), Wireless Personal Communications (WPC), and Wireless Communications and Mobile Computing (WCMC). He gave a tutorial on IEEE 802.11 in ACM MobiCom 2004 and IEEE ICC 2005. Since year 2000, he has been a voting member of IEEE 802.11 WLAN Working Group. He has received a number of awards including the Young Scientist Award (awarded by the President of Korea) in 2008; IEEK/IEEE Joint Award for Young IT Engineer of the Year 2007 in 2007; the Outstanding Research Award in 2008 and the Best Teaching Award in 2006 both from the College of Engineering, Seoul National University; the Best Paper Award from IEEE WoWMoM 2008; and Recognition of Service Award in 2005 and 2007 from ACM. Dr. Choi was a recipient of the Korea Foundation for Advanced Studies (KFAS) Scholarship and the Korean Government Overseas Scholarship during 1997–1999 and 1994–1997, respectively. He is a senior member of IEEE, and a member of ACM, KICS, IEEK, KIISE. Daji Qiao   is currently an assistant professor in the Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa. He received his Ph.D. degree in Electrical Engineering-Systems from The University of Michigan, Ann Arbor, Michigan, in February 2004. His current research interests include modeling, analysis and protocol/algorithm design for various types of wireless/mobile networks, including IEEE 802.11 Wireless LANs, mesh networks, and sensor networks. He is a member of IEEE and ACM.   相似文献   

4.
Video streaming with varying transmission bandwidth is becoming increasingly important. In this paper, an interactive video streaming system is proposed. Fine Granularity Scalability (FGS) is applied to be the streaming video format. The computational complexity of FGS coding is analyzed to explore an efficient FGS implementation. A new transmission model is proposed for the realization of a content-aware video streaming. At encoder side, the current MPEG-4 FGS coding flow is reordered such that the picture-level maximum can be acquired in advance and bit-plane data can be dynamically adapted. With these proposed hardware-oriented optimization approaches, a hardwired FGS block-level processing core is proposed to achieve a cost-effective solution to FGS implementation. The streaming server can adaptively decide quality-enhanced region by selective enhancement according to both object information from encoding side and user-defined region from receiver side. From the simulation results, it’s demonstrated that the proposed approach can provide better quality in users’ interest regions with no bit-rate or complexity overhead. Yung-Chi Chang was born in Kaohsiung, Taiwan, R.O.C., in 1975. He received the B.S., M.S., and Ph.D. degrees from the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., in 1998, 2000, and 2005, respectively. He serves as senior engineer in SoC Solutions Dept., Vivotek Inc. now. His research interests include video coding algorithms and VLSI architectures for image/video processing. Chih-Wei Hsu was born in Taipei, Taiwan, in 1979. He received the B.S.E.E and M.S.E.E degrees from National Taiwan University (NTU), Taipei, in 2001 and 2003, respectively. He joined MediaTek, Inc., Hsinchu, Taiwan, in 2003, where he develops integrated circuits related to multimedia coding standard and digital consumer devices. His research interests include video coding, video processing and VLSI design. Wei-Min Chao was born in Taoyuan, Taiwan, R.O.C., in 1977. He received the B.S. and M.S. degrees from the Department of Electronics Engineering, National Taiwan University in 2000 and 2002 separately. His research interests include video coding algorithms and VLSI architecture for image and video processing. Liang-Gee Chen was born in Yun-Lin, Taiwan, in 1956. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from National Cheng Kung University, Tainan, Taiwan, in 1979, 1981, and 1986, respectively. He was an Instructor (1981–1986), and an Associate Professor (1986–1988) in the Department of Electrical Engineering, National Cheng Kung University. In the military service during 1987 to 1988, he was an Associate Professor in the Institute of Resource Management, Defense Management College. In 1988, he joined the Department of Electrical Engineering, National Taiwan University. During 1993 to 1994 he was a Visiting Consultant of DSP Research Department, AT&T Bell Lab, Murray Hill. In 1997, he was a visiting scholar of the Department of Electrical Engineering, University of Washington, Seattle. During 2001 to 2004, he was the first director of the Graduate Institute of Electronics Engineering (GIEE) in National Taiwan University (NTU). Currently, he is a Professor of the Department of Electrical Engineering and GIEE in NTU, Taipei, Taiwan. He is also the director of the Electronics and Optoelectronics Research Laboratories in Industrial Technology Research Institute, Hsinchu, Taiwan. His current research interests are DSP architecture design, video processor design, and video coding systems. Dr. Chen has served as an Associate Editor of IEEE Transactions on Circuits and Systems for Video Technology since 1996, as Associate Editor of IEEE Transactions on VLSI Systems since 1999, and as Associate Editor of IEEE Transactions on Circuits and Systems II since 2000. He has been the Associate Editor of the Journal of Circuits, Systems, and Signal Processing since 1999, and a Guest Editor for the Journal of Video Signal Processing Systems. He is also the Associate Editor of the Proceedings of the IEEE. He was the General Chairman of the 7th VLSI Design/CAD Symposium in 1995 and of the 1999 IEEE Workshop on Signal Processing Systems: Design and Implementation. He is the Past-Chair of Taipei Chapter of IEEE Circuits and Systems (CAS) Society, and is a member of the IEEE CAS Technical Committee of VLSI Systems and Applications, the Technical Committee of Visual Signal Processing and Communications, and the IEEE Signal Processing Technical Committee of Design and Implementation of SP Systems. He is the Chair-Elect of the IEEE CAS Technical Committee on Multimedia Systems and Applications. During 2001–2002, he served as a Distinguished Lecturer of the IEEE CAS Society. He received the Best Paper Award from the R.O.C. Computer Society in 1990 and 1994. Annually from 1991 to 1999, he received Long-Term (Acer) Paper Awards. In 1992, he received the Best Paper Award of the 1992 Asia-Pacific Conference on circuits and systems in the VLSI design track. In 1993, he received the Annual Paper Award of the Chinese Engineer Society. In 1996 and 2000, he received the Outstanding Research Award from the National Science Council, and in 2000, the Dragon Excellence Award from Acer. He is a member of Phi Tan Phi.  相似文献   

5.
In this paper, we investigate the routing optimization problem in wireless mesh networks. While existing works usually assume static and known traffic demand, we emphasize that the actual traffic is time-varying and difficult to measure. In light of this, we alternatively pursue a stochastic optimization framework where the expected network utility is maximized. For multi-path routing scenario, we propose a stochastic programming approach which requires no priori knowledge on the probabilistic distribution of the traffic. For the single-path routing counterpart, we develop a learning-based algorithm which provably converges to the global optimum solution asymptotically.
Yuguang FangEmail:

Yang Song   received his B.E. and M.E. degrees in Electrical Engineering from Dalian University of Technology, Dalian, China, and University of Hawaii at Manoa, Honolulu, U.S.A., in July 2004 and August 2006, respectively. Since September 2006, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are wireless network, game theory, optimization and mechanism design. He is a student member of IEEE a member of Game Theory Society. Chi Zhang   received the B.E. and M.E. degrees in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in July 1999 and January 2002, respectively. Since September 2004, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Yuguang Fang   received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and to a full professor in August 2005. He holds a University of Florida Research Foundation (UFRF) Professorship from 2006 to 2009 and a Changjiang Scholar Chair Professorship with National Key Laboratory of Integrated Services Networks, Xidian University, China, from 2008 to 2011. He has published over 200 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He is the recipient of the Best Paper Award in IEEE International Conference on Network Protocols (ICNP) in 2006 and the recipient of the IEEE TCGN Best Paper Award in the IEEE High-Speed Networks Symposium, IEEE Globecom in 2002. Dr. Fang is also active in professional activities. He is a Fellow of IEEE and a member of ACM. He has served on several editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He has been actively participating in professional conference organizations such as serving as the Steering Committee Co-Chair for QShine, the Technical Program Vice-Chair for IEEE INFOCOM’2005, Technical Program Symposium Co-Chair for IEEE Globecom’2004, and a member of Technical Program Committee for IEEE INFOCOM (1998, 2000, 2003–2009).   相似文献   

6.
We report on two generations of CMOS image sensors with digital output fabricated in a 0.6 μm CMOS process. The imagers embed an ALOHA MAC interface for unfettered self-timed pixel read-out targeted to energy-aware sensor network applications. Collision on the output is monitored using contention detector circuits. The image sensors present very high dynamic range and ultra-low power operation. This characteristics allow the sensor to operate in different lighting conditions and for years on the sensor network node power budget. Eugenio Culurciello (S’97–M’99) received the Ph.D. degree in Electrical and Computer Engineering in 2004 from Johns Hopkins University, Baltimore, MD. In July 2004 he joined the department of Electrical Engineering at Yale University, where he is currently an assistant professor. He founded and instrumented the E-Lab laboratory in 2004. His research interest is in analog and mixed-mode integrated circuits for biomedical applications, sensors and networks, biological sensors, Silicon on Insulator design and bio-inspired systems. Andreas G. Andreou received his Ph.D. in electrical engineering and computer science in 1986 from Johns Hopkins University. Between 1986 and 1989 he held post-doctoral fellow and associate research scientist positions in the Electrical and Computer engineering department while also a member of the professional staff at the Johns Hopkins Applied Physics Laboratory. Andreou became an assistant professor of Electrical and Computer engineering in 1989, associate professor in 1993 and professor in 1996. He is also a professor of Computer Science and of the Whitaker Biomedical Engineering Institute and director of the Institute’s Fabrication and Lithography Facility in Clark Hall. He is the co-founder of the Johns Hopkins University Center for Language and Speech Processing. Between 2001 and 2003 he was the founding director of the ABET accredited undergraduate Computer Engineering program. In 1996 and 1997 he was a visiting professor of the computation and neural systems program at the California Institute of Technology. In 1989 and 1991 he was awarded the R.W. Hart Prize for his work on mixed analog/digital integrated circuits for space applications. He is the recipient of the 1995 and 1997 Myril B. Reed Best Paper Award and the 2000 IEEE Circuits and Systems Society, Darlington Best Paper Award. During the summer of 2001 he was a visiting professor in the department of systems engineering and machine intelligence at Tohoku University. In 2006, Prof. Andreou was elected as an IEEE Fellow and a distinguished lecturer of the IEEE EDS society. Andreou’s research interests include sensors, micropower electronics, heterogeneous microsystems, and information processing in biological systems. He is a co-editor of the IEEE Press book: Low-Voltage/Low-Power Integrated Circuits and Systems, 1998 (translated in Japanese) and the Kluwer Academic Publishers book: Adaptive Resonance Theory Microchips, 1998. He is an associate editor of IEEE Transactions on Circuits and Systems I.  相似文献   

7.
A new performance metric, Peak-Error Ratio (PER) has been presented to benchmark the performance of a class of neuron circuits to realize neuron activation function (NAF) and its derivative (DNAF). Neuron circuits, biased in subthreshold region, based on the asymmetric cross-coupled differential pair configuration and conventional configuration of applying small external offset voltage at the input have been compared on the basis of PER. It is shown that the technique of using transistor asymmetry in a cross-coupled differential pair performs on-par with that of applying external offset voltage. The neuron circuits have been experimentally prototyped and characterized as a proof of concept on the 1.5 μm AMI technology. Amit K. Gupta received his B.Tech. in Electrical Engineering from the Indian Institute of Technology Kanpur, India, in 2000 and the M.Sc. (Engg.) in Microelectronics from the Indian Institute of Science, Bangalore, India in 2004. He joined the Semiconductor Products Sector, Motorola (currently Freescale Semiconductor), India, in 2000, where he is currently working as a Design Engineer. His research interest includes low power analog circuit design and neuromorphic engineering. Navakanta Bhat received his B.E. in Electronics and Communication from University of Mysore in 1989, M.Tech. in Microelectronics from I.I.T. Bombay in 1992 and Ph.D. in Electrical Engineering from Stanford University, Stanford, CA in 1996. Then he worked at Motorola's Networking and Computing Systems Group in Austin, TX until 1999. At Motorola he worked on logic technology development and he was responsible for developing high performance transistor design and dual gate oxide technology. He joined Indian Institute of Science, Bangalore in 1999 where he is currently Assistant Professor in the Electrical Communication Engineering department. His current research is focused on Analog and RF Microsystems using CMOS and MEMS technology. The work includes process development, device design and modeling, circuit design. He has several research publications in international journals and conferences and 2 US patents to his credit. He is the recipient of the Young Engineer Award (2003) from the Indian National Academy of Engineering. He is currently the chair of the IEEE Electron Devices and Solid-State Circuits society, Bangalore chapter which has been recognized as the Outstanding Chapter of the Year (2003) by the IEEE SSC society.  相似文献   

8.
This paper presents Quality of Service (QoS) based routing and priority class assignment algorithms. It introduces an end-to-end delay margin balancing approach to routing, and uses it to formulate a nonlinear optimization problem. In a single-class network, the formulation is shown to be convex; however in a multi-class priority network, it is only convex within specific regions, and is infeasible otherwise. A centralized off-line computation technique is proposed to calculate both the route configuration and end-to-end priority assignment. A gradient-based solution in the convex region and a heuristic to overcome the multi-class discontinuity are derived. An approximation of the optimization problem is developed for on-line distributed processing is then presented. Using the approximation, arriving traffic flows can use vector routing tables to search for routes. Compared with minimum-hop, minimum-delay, and min-interference routing algorithms, the proposed approach enables the single-class network to accommodate more users of different end-to-end delay requirements. In a multi-class priority network, results show that using the objective function to combine route and priority class assignment further increases the supportable network traffic volume. Mohamed Ashour received his B.Sc. (1991) and M.Sc. (1997) in Electrical Engineering from Ain Shams University, Cairo, Egypt. He worked for Hughes and General Dynamics as a Telecommunications Engineer. Currently, he is a Ph.D. Candidate in the Department of Electrical and Computer Engineering of McGill University, Montreal, Quebec, Canada. His current area of research is focused on traffic engineering, routing, and QoS provisioning in DiffServ and MPLS Networks. He is also interested in multi-class queuing analysis of long-range traffic, and QoS provisioning in ad hoc networks and satellite communications. Tho Le-Ngoc obtained his B. Eng. (with Distinction) in Electrical Engineering in 1976, his M.Eng. in Microprocessor Applications in 1978 from McGill University, Montreal, and his Ph.D. in Digital Communications 1983 from the University of Ottawa, Canada. During 1977–1982, he was with Spar Aerospace Limited as a Design Engineer and then a Senior Design Engineer, involved in the development and design of the microprocessor-based controller of Canadarm (of the Space Shuttle), and SCPC/FM, SCPC/PSK, TDMA satellite communications systems. During 1982–1985, he was an Engineering Manager of the Radio Group in the Department of Development Engineering of SRTelecom Inc., developed the new point-to-multipoint DA-TDMA/TDM Subscriber Radio System SR500. He was the System Architect of this first digital point-to-multipoint wireless TDMA system. During 1985–2000, he was a Professor the Department of Electrical and Computer Engineering of Concordia University. Since 2000, he has been with the Department of Electrical and Computer Engineering of McGill University. His research interest is in the area of broadband digital communications with a special emphasis on Modulation, Coding, and Multiple-Access Techniques. He is a Senior Member of the Ordre des Ingénieur du Quebec, a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), a Fellow of the Engineering Institute of Canada (EIC), and a Fellow of the Canadian Academy of Engineering (CAE). He is the recipient of the 2004 Canadian Award in Telecommunications Research, and recipient of the IEEE Canada Fessenden Award 2005.  相似文献   

9.
During back-end manufacturing process of IC, intervention of spot defects induces extra and missing material of interconnects causing circuit failures. Interconnect narrowing occurs when spot defects induce interconnects missing material without resulting in a complete cut. The narrow sites of defective interconnects favor electromigration that makes narrow interconnects more likely to induce a chip failure than regular interconnects. In this paper, an innovative layout sensitivity model accounting for “narrow” defects is derived. The paper also pioneers estimation of the probability of narrow interconnects in the die. The layout sensitivity model for narrow interconnects is tested and compared to actual and simulated data. Our layout sensitivity model predicts the probability of narrowing with 3.1% error, on average. The model is then combined with electromigration constraints to predict mean-time-to-failure of chips manufactured in future technologies down to 32 nm node. The paper concludes with some other possible applications of the narrow interconnect predictive model.
Payman Zarkesh-HaEmail:

Rani S. Ghaida   received his B.E. degree in Computer Engineering from the Lebanese American University, Byblos, Lebanon, in 2006 and his M.S. degree in Computer Engineering from the University of New Mexico, Albuquerque, NM, in 2008. He is currently working toward the Ph.D. degree at the University of California, Los Angeles, CA. His research interests include semiconductor manufacturing yield modeling and prediction, reliability of IC products, design for manufacturability, and design manufacturing interface. He is a member of IEEE and IMPACT. Dr. Payman Zarkesh-Ha   is an assistant professor at Electrical and Computer Engineering Department at University of New Mexico in Albuquerque, NM. He received degrees in Electrical and Computer Engineering from Sharif University, Tehran, Iran (M.S. 1994) and Georgia Institute of Technology, Atlanta, GA (Ph.D. 2001). During 2001-2006, he was with LSI Logic Corporation, Milpitas, CA; where he worked on interconnect architecture design for the next ASIC generations. In 2006, he joined the faculty of the Department of Electrical and Computer Engineering in the University of New Mexico, where he currently is engaged. Dr. Zarkesh-Ha served as industry liaison for LSI Logic Corp. with Semiconductor Research Corporation (SRC) and Microelectronics Advanced Research Corporation (MARCO) from 2001-2006. His research interests are Statistical modeling of VLSI systems, design for manufacturability, lowpower and high-performance VLSI design. He has published over 40 refereed papers and a book chapter in these areas. He also holds 5 issued and 4 pending patents in this field. He is currently serving as technical committee member of System Level Interconnect Prediction Workshop and is a senior member of IEEE.  相似文献   

10.
A new transformation method is proposed and used to transform op-amp-RC circuits to G m -C ones with only grounded capacitors. The proposed method enables the generation of high-performance G m -C filters that benefit from the advantages of good and well-known op-amp-RC structures and at the same time feature electronic tunability, high frequency capability and monolithic integration ability. An attractive feature of the proposed method is that it results in G m -C structures with only grounded capacitors in spite of the presence of floating capacitors in the original op-amp-RC circuits. Ahmed M. Soliman was born in Cairo Egypt, on November 22, 1943. He received the B.Sc. degree with honors from Cairo University, Cairo, Egypt, in 1964, the M.S. and Ph.D. degrees from the University of Pittsburgh, Pittsburgh, PA, U.S.A., in 1967 and 1970, respectively, all in Electrical Engineering. He is currently Professor Electronics and Communications Engineering Department, Cairo University, Egypt. From September 1997–September 2003, Dr. Soliman served as Professor and Chairman Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985–1987, Dr. Soliman served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987–1991 he was the Associate Dean of Engineering at the same University. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University and the American University in Cairo. He was a visiting scholar at Bochum University, Germany (Summer 1985) and with the Technical University of Wien, Austria (Summer 1987). In November 2005, Dr. Soliman gave a lecture at Nanyang Technological University, Singapore. Dr. Soliman was also invited to visit Taiwan and gave lectures at Chung Yuan Christian University and at National Central University of Taiwan. In 1977, Dr. Soliman was decorated with the First Class Science Medal, from the President of Egypt, for his services to the field of Engineering and Engineering Education. Dr. Soliman is a Member of the Editorial Board of the IEE Proceedings Circuits, Devices and Systems. Dr. Soliman is a Member of the Editorial Board of Analog Integrated Circuits and Signal Processing. Dr. Soliman served as Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters) from December 2001 to December 2003 and is Associate Editor of the Journal of Circuits, Systems and Signal Processing from January 2004–Now.  相似文献   

11.
An On-Chip Spectrum Analyzer for Analog Built-In Testing   总被引:2,自引:2,他引:0  
This paper presents an analog built-in testing (BIT) architecture and its implementation. It enables the frequency response and harmonic distortion characterizations of an integrated device-under-test (DUT) through a digital off-chip interface. External analog instrumentation is avoided, reducing test time and cost. The proposed on-chip testing scheme uses a digital frequency synthesizer and a simple signal generator synchronized with a switched capacitor bandpass filter. A general methodology for the use of this structure in the functional verification of a DUT is also provided. The circuit-level design and experimental results of an integrated prototype in standard CMOS 0.5 m technology are presented to demonstrate the feasibility of the proposed BIT technique.Marcia G. Mendez-Rivera was born in Irapuato, Mexico in 1972. She received the Communications and Electronics Engineering Degree from the Universidad de Guanajuato, Guanajuato, Mexico. in 1996, the M.Sc. degree from the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Puebla, Mexico in 1998 and the M.Sc. from Texas A&M University, College Station in 2002. Her research interest is in the design and fabrication of analog and mixed-signal circuits.Alberto Valdes-Garcia born in 1978, grew up in San Mateo Atenco, Mexico. He received the B.S. in Electronic Systems Engineering degree from the Monterrey Institute of Technology (ITESM), Campus Toluca, Mexico in 1999 (with honors as the best score from all majors). Since the fall of 2000 he has been working towards the Ph.D. degree at Analog and Mixed-Signal Center (AMSC), Texas A&M University. During the spring and summer of 2000 he was a Design Engineer with Motorola Broadband Communications Sector. In the summer of 2002 he was with the Read Channel Design Group at Agere Systems where he investigated wide tuning range GHz LC VCOs for mass storage applications. During the summer of 2004 he was with the Mixed-Signal Communications IC Design Group at the IBM T. J. Watson Research Center, where worked on design and analysis of SiGe power amplifiers for millimeter wave radios. Since the fall of 2001 he has been a Semiconductor Research Corporation (SRC) research assistant at the AMSC working on the development of analog built-in testing techniques. Since the fall of 2000, Alberto has been the recipient of a scholarship from the Mexican National Council for Science and Technology (CONACYT). He represented Mexico in the 1994 Odyssey of the Mind World Creativity Contest and in the 1997 International Exposition for Young Scientists. His present research interests include built-in testing implementations for analog and RF circuits, system level design for wireless receivers and RF circuit design for UltraWideBand (UWB) communications.Jose Silva-Martinez was born in Tecamachalco, Puebla, México. He received the B.S. degree in electronics from the Universidad Autónoma de Puebla, México, in 1979, the M.Sc. degree from the Instituto Nacional de Astrofísica Optica y Electrónica (INAOE), Puebla, México, in 1981, and the Ph.D. degree from the Katholieke Univesiteit Leuven, Leuven Belgium in 1992. From 1981 to 1983, he was with the Electrical Engineering Department, INAOE, where he was involved with switched-capacitor circuit design. In 1983, he joined the Department of Electrical Engineering, Universidad Autonoma de Puebla, where he remained until 1993; He was a co-founder of the graduate program on Opto-Electronics in 1992. From 1985 to 1986, he was a Visiting Scholar in the Electrical Engineering Department, Texas A&M University. In 1993, he re-joined the Electronics Department, INAOE, and from May 1995 to December 1998, was the Head of the Electronics Department; He was a co-founder of the Ph.D. program on Electronics in 1993. He is currently with the Department of Electrical Engineering (Analog and Mixed Signal Center) Texas A&M University, at College Station, where He holds the position of Associate Professor. His current field of research is in the design and fabrication of integrated circuits for communication and biomedical application. Dr. Silva-Martinez has served as IEEE CASS Vice President Region-9 (1997–1998), and as Associate Editor for IEEE Transactions on Circuits and Systems part-II from 1997–1998 and May 2002–December 2003. Since January 2004 is serving as Associate Editor of IEEE TCAS Part-I. He was the main organizer of the 1998 and 1999 International IEEE-CAS Tour in region 9, and Chairman of the International Workshop on Mixed-Mode IC Design and Applications (1997–1999). He is the inaugural holder of the TI Professorship-I in Analog Engineering, Texas A&M University. He was a co-recipient of the 1990 European Solid-State Circuits Conference Best Paper Award.Edgar Sánchez-Sinencio was born in Mexico City, Mexico. He received the degree in communications and electronic engineering (Professional degree) from the National Polytechnic Institute of Mexico, Mexico City, the M.S.E.E. degree from Stanford University, CA, and the Ph.D. degree from the University of Illinois at Urbana-Champaign, in 1966, 1970, and 1973, respectively. In 1974 he held an industrial Post-Doctoral position with the Central Research Laboratories, Nippon Electric Company, Ltd., Kawasaki, Japan. From 1976 to 1983 he was the Head of the Department of Electronics at the Instituto Nacional de Astrofísica, Optica y Electrónica (INAOE), Puebla, Mexico. He was a Visiting Professor in the Department of Electrical Engineering at Texas A&M University, College Station, during the academic years of 1979–1980 and 1983-1984. He is currently the TI J Kilby Chair Professor and Director of the Analog and Mixed-Signal Center at Texas A&M University. He was the General Chairman of the 1983 26th Midwest Symposium on Circuits and Systems. He was an Associate Editor for IEEE Trans. on Circuits and Systems, (1985–1987), and an Associate Editor for the IEEE Trans. on Neural Networks. He is the former Editor-in-Chief of the Transactions on Circuits and Systems II. He is co-author of the book Switched Capacitor Circuits (Van Nostrand-Reinhold 1984), and co-editor of the book Low Voltage/Low-Power Integrated Circuits and Systems (IEEE Press 1999). In November 1995 he was awarded an Honoris Causa Doctorate by the National Institute for Astrophysics, Optics and Electronics, Mexico. The first honorary degree awarded for Microelectronic Circuit Design contributions. He is co-recipient of the 1995 Guillemin-Cauer for his work on Cellular Networks. He is a former IEEE CAS Vice President-Publications. He was also the co-recipient of the 1997 Darlington Award for his work on high-frequency filters He received the Circuits and Systems Society Golden Jubilee Medal in 1999. He was the IEEE Circuits and Systems Society, Representative to the Solid-State Circuits Society (2000–2002). He is presently a member of the IEEE Solid-State Circuits Fellow Award Committee. His present interests are in the area of RF-Communication circuits and analog and mixed-mode circuit design. He is an IEEE Fellow Member since 1992.  相似文献   

12.
In this paper, the bitstream parsing analysis and an efficient and flexible bitstream parsing processor are presented. The bitstream parsing analysis explores the critical part in bitstream parsing. Based on the result, the novel approaches to parse data partitioned bitstreams are presented. An efficient instruction set optimized for bitstream processing, especially for DCT coefficient decoding, is designed and the processor architecture can be programmed for various video standards. It has been integrated into an MPEG-4 video decoding system successfully and can achieve real time bitstream decoding with bitstream coded under 4CIF frame size with 30 fps, 8Mbps, which is the specification of MPEG-4 Advanced Simple Profile Level 5.Yung-Chi Chang was born in Kaohsiung, Taiwan, R.O.C., in 1975. He received the B.S. and M.S. degrees from the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., in 1998 and 2000, respectively, where he is currently pursuing the Ph.D. degree in the Graduate Institute of Electrical Engineering. His research interests include video coding algorithms and VLSI architectures for image/video processing.Chao-Chih Huang was born in Taiwan, R.O.C., in 1977. He received the B.S. and M.S. degree in electrical engineering from National Taiwan University in 2000 and 2002, respectively. In Oct 2002, he has joined the multimedia team of Realtek Taiwan, to be a system design engineer and researched on video coding algorithms. His research interests include video compression/coding and image processing.Wei-Min Chao was born in Taoyuan, Taiwan, R.O.C., in 1977. He received the B.S. and M.S. degrees from the Department of Electronics Engineering, National Taiwan University in 2000 and 2002 separately. His research interests include video coding algorithms and VLSI architecture for image and video processing.Liang-Gee Chen was born in Yun-Lin, Taiwan, in 1956. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from National Cheng Kung University, Tainan, Taiwan, in 1979, 1981, and 1986, respectively. He was an Instructor (1981–1986), and an Associate Professor (1986–1988) in the Department of Electrical Engineering, National Cheng Kung University. In the military service during 1987 to 1988, he was an Associate Professor in the Institute of Resource Management, Defense Management College. In 1988, he joined the Department of Electrical Engineering, National Taiwan University. During 1993 to 1994 he was a Visiting Consultant of DSP Research Department, AT&T Bell Lab, Murray Hill. In 1997, he was a visiting scholar of the Department of Electrical Engineering, University of Washington, Seattle. During 2001 to 2004, he was the first director of the Graduate Institute of Electronics Engineering (GIEE) in National Taiwan University (NTU). Currently, he is a Professor of the Department of Electrical Engineering and GIEE in NTU, Taipei, Taiwan. He is also the director of the Electronics Research and Service Organization in Industrial Technology Research Institute, Hsinchu, Taiwan. His current research interests are DSP architecture design, video processor design, and video coding systems.Dr. Chen has served as an Associate Editor of IEEE Transactions on Circuits and Systems for Video Technology since 1996, as Associate Editor of IEEE Transactions on VLSI Systems since 1999, and as Associate Editor of IEEE Transactions on Circuits and Systems II since 2000. He has been the Associate Editor of the Journal of Circuits, Systems, and Signal Processing since 1999, and a Guest Editor for the Journal of Video Signal Processing Systems. He is also the Associate Editor of the Proceedings of the IEEE. He was the General Chairman of the 7th VLSI Design/CAD Symposium in 1995 and of the 1999 IEEE Workshop on Signal Processing Systems: Design and Implementation. He is the Past-Chair of Taipei Chapter of IEEE Circuits and Systems (CAS) Society, and is a member of the IEEE CAS Technical Committee of VLSI Systems and Applications, the Technical Committee of Visual Signal Processing and Communications, and the IEEE Signal Processing Technical Committee of Design and Implementation of SP Systems. He is the Chair-Elect of the IEEE CAS Technical Committee on Multimedia Systems and Applications. During 2001–2002, he served as a Distinguished Lecturer of the IEEE CAS Society. He received the Best Paper Award from the R.O.C. Computer Society in 1990 and 1994. Annually from 1991 to 1999, he received Long-Term (Acer) Paper Awards. In 1992, he received the Best Paper Award of the 1992 Asia-Pacific Conference on circuits and systems in the VLSI design track. In 1993, he received the Annual Paper Award of the Chinese Engineer Society. In 1996 and 2000, he received the Outstanding Research Award from the National Science Council, and in 2000, the Dragon Excellence Award from Acer. He is a member of Phi Tan Phi.  相似文献   

13.
The transition activity on a data bus is a time series that determines power consumption on this data bus. The average values of power consumption and power grid voltage drop are proportional to average value of transition activity, i.e., transition probability. The fluctuation of power grid voltage drop appears as noise on power grid and its strength is determined by the second order statistics of transition activity, i.e., variance, auto-correlation function or power spectrum. In this paper, for the first time, simple accurate models for estimating variance and power spectrum of transition activity are proposed. The proposed models are based on linearly modeling spatial-time correlation of bit-level transition activity and result in low computational complexity but very good estimation accuracy. In addition, the dual bit type (DBT) [1, 2] model for estimating average transition activity was further developed. The previous DBT model was made complete with the equation derived in this paper for computing transition probability beyond breakpoint BP 1. Besides DSP computational architecture and algorithm designs, the proposed simple models are of great significance for power grid noise decoupling and chip floor-planning. Lijun Gao (S’99–M’01) received B.E. and M.E. degrees in Communication & Electronic Systems from Tsinghua University, Beijing, China, in 1986 and 1988, respectively. He received his PhD degree in Elecrical & Computer Engineering from University of Minnesota, Minneapolis, USA, in 2001. He is also an MS degree candidate in Computer & Information Science at University of Minnesota, Minneapolis. Dr. Gao is currently with Medtronic Inc., Minneapolis, MN, and working on DSP design for pacemaker. From 2001 to 2003, he was with Bermai Inc., Minnetonka, MN and working on the design of wireless LAN (802.11a/11b) chipsets. In 2001, he worked in the R & D division of GlobeSpan Semiconductor Inc., Red Bank, NJ. From 1988 to 1991, he was a faculty member with Tsinghua University, Beijing, China. From 1991 to 1996, he was a R & D engineer with the Institute of Software, Chinese Academy of Science, Beijing, China. For the period of 1991 to 1993, he was a visiting R & D engineer at Onflo Computer Co. Hong Kong. Dr. Gao received the Science & Technology awards from the National Education Council, China, in 1994 for his contribution to radar signal processing while he was at Tsinghua University, and from the ministry of Electronic Industry, China, in 1995 for his contribution to the CJK Ideograph Unification in ISO 10646 (Unicode). His current reserach interest includes the algorithm/architecture/ circuit for VLSI design, the computational aspects of digital signal processing (DSP) and programmable DSP processor. Specifically, his focus is on the deep-submicron VLSI design, power estimation/low power design, computer arithmetic, finite field arithmetic, error control coding, cryptography, adaptive filters, equalization, beamformer, special-purpose processors and FPGA/reconfigurable computing. Keshab K. Parhi (S’85-M’88–SM’91-F’96) Keshab K. Parhi received his B.Tech., MSEE, and Ph.D. degrees from the Indian Institute of Technology, Kharagpur, the University of Pennsylvania, Philadelphia, and the University of California at Berkeley, in 1982, 1984, and 1988, respectively. He has been with the University of Minnesota, Minneapolis, since 1988, where he is currently Distinguished McKnight University Professor in the Department of Electrical and Computer Engineering. His research addresses VLSI architecture design and implementation of physical layer aspects of broadband communications systems. He is currently working on error control coders and cryptography architectures, high-speed transceivers, ultra wideband systems, quantum error control coders and quantum cryptography. He has published over 350 papers, has authored the text book VLSI Digital Signal Processing Systems (Wiley, 1999) and coedited the reference book Digital Signal Processing for Multimedia Systems (Marcel Dekker, 1999). Dr. Parhi is the recipient of numerous awards including the 2004 F.E. Terman award by the American Society of Engineering Education, the 2003 IEEE Kiyo Tomiyasu Technical Field Award, the 2001 IEEE W.R.G. Baker prize paper award, and a Golden Jubilee award from the IEEE Circuits and Systems Society in 1999. He has served on the editorial boards of the IEEE TRANSACTIONS ON CAS, CAS-II, VLSI Systems, Signal Processing, Signal Processing Letters, and currently serves on editorial board of the IEEE Signal Processing Magazine, and is the curent Editor-in-Chief of the IEEE Trans. on Circuits and Systems–I (2004–2005 term). He has served as technical program cochair of the 1995 IEEE VLSI Signal Processing workshop and the 1996 ASAP conference, and as the general chair of the 2002 IEEE Workshop on Signal Processing Systems. He was a distinguished lecturer for the IEEE Circuits and Systems society during 1996–1998. He currently serves on the Board of Governors of the IEEE Circuits and Systems Society. He was elected a Fellow of IEEE in 1996.  相似文献   

14.
Block matching motion estimation is the heart of video coding systems. During the last two decades, hundreds of fast algorithms and VLSI architectures have been proposed. In this paper, we try to provide an extensive exploration of motion estimation with our new developments. The main concepts of fast algorithms can be classified into six categories: reduction in search positions, simplification of matching criterion, bitwidth reduction, predictive search, hierarchical search, and fast full search. Comparisons of various algorithms in terms of video quality and computational complexity are given as useful guidelines for software applications. As for hardware implementations, full search architectures derived from systolic mapping are first introduced. The systolic arrays can be divided into inter-type and intra-type with 1-D, 2-D, and tree structures. Hexagonal plots are presented for system designers to clearly evaluate the architectures in six aspects including gate count, required frequency, hard-ware utilization, memory bandwidth, memory bitwidth, and latency. Next, architectures supporting fast algorithms are also reviewed. Finally, we propose our algorithmic and architectural co-development. The main idea is quick checking of the entire search range with simplified matching criterion to globally eliminate impossible candidates, followed by finer selection among potential best matched candidates. The operations of the two stages are mapped to the same hardware for resource sharing. Simulation results show that our design is ten times more area-speed efficient than full search architectures while the video quality is competitively the same. Yu-Wen Huang was born in Kaohsiung, Taiwan, in 1978. He received the B.S. degree in electrical engineering and the Ph.D. degree in electronics engineering from National Taiwan University, Taipei, in June 2000 and December 2004, respectively. He joined MediaTek, Inc., Hsinchu, Taiwan, in 2004, where he develops integrated circuits related to video coding systems. His research interests include video segmentation, moving object detection and tracking, intelligent video coding technology, motion estimation, face detection and recognition, H.264/AVC video coding, and associated VLSI architectures. Ching-Yeh Chen was born in Taipei, Taiwan, in 1980. He received the B.S. degree from the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, in 2002. He currently is pursuing the Ph.D. degree at the Graduate Institute of Electronics Engineering, National Taiwan University. His research interests include intelligent video signal processing, global/local motion estimation, scalable video coding, and associated VLSI architectures. Chen-Han Tsai received the B.S. degree in electrical engineering from National Taiwan University in 2002. Now he is working toward the Ph.D. degree in the Graduate Institute of Electronics Engineering, National Taiwan University. His major research interests include face detection and recognition, motion estimation, H.264/AVC video coding, digital TV systems, and related VLSI architectures. Chun-Fu Shen received the B.S. and M.S. degrees in electrical engineering from National Taiwan University in 1996 and 1998, respectively. After two years of military service, he joined VIVOTEK, Inc., Taipei County, Taiwan, in 2000. He developed many video coding systems and IP camera products on DSP platforms and ASICs. His major research interests include JPEG, H.263, MPEG-4, and H.264/AVC coding systems, network camera SOC, and embedded systems. Liang-Gee Chen was born in Yun-Lin, Taiwan, in 1956. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from National Cheng Kung University, in 1979, 1981, and 1986, respectively. He was an instructor (1981–1986), and an associate professor (1986–1988) in the Department of Electrical Engineering, National Cheng Kung University. In the military service during 1987 and 1988, he was an associate professor in the Institute of Resource Management, Defense Management College. From 1988, he joined the Department of Electrical Engineering, National Taiwan University. During 1993 to 1994 he was a visiting consultant of DSP Research Department, AT&T Bell Lab, Murray Hill. In 1997, he was the visiting scholar of the Department of Electrical Engineering, University, of Washington, Seattle. Currently, he is a professor of National Taiwan University. From 2004, he is also the executive vice president and the general director of Electronics Research and Service Organization (ERSO) in the Industrial Technology Research Institute (ITRI). His current research interests are DSP architecture design, video processor design, and video coding systems. Dr. Chen is a Fellow of IEEE. He is also a member of the honor society Phi Tau Phi. He was the general chairman of the 7th VLSI Design CAD Symposium. He was also the general chairman of the 1999 IEEE Workshop on Signal Processing Systems: Design and Implementation. He has served as the associate editor of IEEE Transactions on Circuits and Systems for Video Technology since 1996, the associate editor of IEEE Transactions on VLSI Systems since 1999, the associate editor of Journal of Circuits, Systems, and Signal Processing since 1999, and the guest editor of Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology since 2001. Now he is also the associate editor of IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing and the associate editor of Proceedings of the IEEE. Dr. Chen received the Best Paper Awards from ROC Computer Society in 1990 and 1994. From 1991 to 2005, he received Long-Term (Acer) Paper Awards annually. In 1992, he received the Best Paper Award of the 1992 Asia-Pacific Conference on Circuits and Systems in VLSI design track. In 1993, he received the Annual Paper Award of Chinese Engineer Society. In 1996, he received the Outstanding Research Award from National Science Council (NSC) and the Dragon Excellence Award from Acer. He was elected as the IEEE Circuits and Systems Distinguished Lecturer from 2001–2002.  相似文献   

15.
In this paper, we discuss and provide a detailed tutorial of four different methods for analytically evaluating the harmonic distortion in class-AB stages. All the methods are suitable for pencil-and-paper analysis and are based on modeling the stage with a specific non-linear function. We analyze them in details and extend some of them for predicting harmonic distortion behavior in a wide range of input signal amplitude. Comparisons made by means of simulations, reveal that some methods are more precise than others but require more computational effort. On the contrary, some of them are simple to use but are less precise. Moreover, some are more appropriate for predicting HD2 and others for HD3, only. Results of the present paper may be used by designers to choose the more efficient method for analyzing distortion in class-AB stages. Gianluca Giustolisi was born in Catania, Italy, in 1971. He received the Laurea degree (cum laude) in electronic engineering and the Ph.D. degree in electrical engineering from University of Catania, Catania, Italy, in 1995 and 1999, respectively. Currently he is associate professor at Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi (DIEES), University of Catania. His research interests include analysis, modelling and design of analog integrated circuits and systems with particular emphasis on non-linear and low-voltage applications. Gianluca Giustolisi is IEEE Member. Gaetano Palumbo was born in Catania, Italy, in 1964. He received the laurea degree in Electrical Engineering in 1988 and a Ph.D. degree from the University of Catania in 1993. Since 1993 he conducts courses on Electronic Devices, Electronics for Digital Systems and basic Electronics. In 1994 he joined the DEES (Dipartimento Elettrico Elettronico e Sistemistico), now DIEES (Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi), at the University of Catania as a researcher, subsequently becoming associate professor in 1998. Since 2000 he is a full professor in the same department. His primary research interest has been analog circuits with particular emphasis on feedback circuits, compensation techniques, current-mode approach, low-voltage circuits. Then, his research has also embraced digital circuits with emphasis on bipolar and MOS current-mode digital circuits, adiabatic circuits, and high-performance building blocks focused on achieving optimum speed within the constraint of low power operation. In all these fields he is developing some the research activities in collaboration with STMicroelectronics of Catania. He was the co-author of three books “CMOS Current Amplifiers” and ”Feedback Amplifiers: theory and design” and “Model and Design of Bipolar and MOS Current-Mode Logic (CML, ECL and SCL Digital Circuits)” all by Kluwer Academic Publishers, in 1999, 2001 and 2004, respectively. He is a contributor to the Wiley Encyclopedia of Electrical and Electronics Engineering. He is the author of more than 250 scientific papers on referred international journals (over 100) and in conferences. Moreover he is co-author of several patents. In 1999/2001 and 2004/2005 he served as Associated Editor of the IEEE Transactions on Circuits and Systems part I for the topic “Analog Circuits and Filters” and “Digital Circuits and Systems”, respectively. In 2005 he was one of the 12 panelists in the scientific-disciplinare area 09 - industrial and information engineering of the CIVR (Committee for Evaluation of Italian Research), which has the aim to evaluate the Italian research in the above area for the period 2001–2003. In 2003 he received the Darlington award. Since 2006 he is serving as Associated Editor of the IEEE Transactions on Circuits and Systems part I. Prof. Palumbo is an IEEE Senior Member.  相似文献   

16.
An analog CMOS low-pass Active-Gm-RC biquadratic cell is presented. The cell combines the advantage of GM-C filters (no parasitic poles) with the advantages of Active-RC filter (large linear range). Two additional digital-based circuits allow to control the pole frequency and to reduce the effects of the non-dominant poles. A 4th order low-pass Butterworth filter with a 2.11 MHz cut-off frequency and a DC-gain of 32 dB for UMTS receiver has been designed in a 0.18 μm CMOS technology with 1.8 V supply voltage. The filter exhibits a −93 dBV input-referred noise with a power consumption of 2.16 mW while the linearity performances corresponds to an in-band IIP3 of 4 dBm and an out-of-band IIP3 of 35 dBm. An Active Gm-RC band-pass cell is presented as possible alternative application. Stefano D'Amico was born in Tricase (Lecce), Italy, in 1976. He received the M.S. Degree in Electrical Engineering from the Politecnico di Bari, Italy. He is, currently, a Ph.D. student in the Department of Innovation Engineering at the University of Lecce, Italy. His research interests are in the area of low-power analog circuits with emphasis in baseband transceivers blocks design. Andrea Baschirotto was born in 1965 in Legnago (Verona), Italy. In 1989, he graduated in Electronic Engineering (summa cum laude) from the University of Pavia, Italy. In 1994, he received the Ph.D. degree in electrical engineering from the University of Pavia. In 1994, he joined the Department of Electronics, University of Pavia, as a Researcher (Assistant Professor). In 1998, he joined the Department of Innovation Engineering, University of Lecce, Italy, as an Associate Professor, where he is leading the Microelectronics Group. Since 1989, he has collaborated with STMicroelectronics, Cornaredo, Italy, on the design of ASICs. Since 1991, he has been associated with I.N.F.N. on the design and realization of read-out channels for high-energy physics experiments and space experiments. He collaborated with SMI's for the design of mixed signals ASICS. His main research interests are in the design of mixed analog/digital integrated circuits, in particular for low-power and/or high-speed signal processing. He has authored or co-authored more than 62 papers in international journals, more than 75 presentations at international conferences, 4 book chapters, and holds 25 industrial patents. In addition, he has co-authored more than 120 papers within research collaborations on high-energy physics experiments. Dr. Baschirotto was a guest editor for the IEEE Trans. Circuits Syst. II for the special issue on IEEE ISCAS 1998. He served IEEE Trans. Circuits Syst. II as an associate editor in the period 2000–2003. He is now serving IEEE Trans. Circuits Syst. I as an associate editor. He is a member of the International technical program Committee (ITPC) of ISSCC and of the TPC of ESSCIRC. He has been the TPC Chairman for ESSCIRC 2002 (the first time in which the conference was held jointly with ESSDERC and the largest attendance was achieved). He is the General Coordinator of a National PRIN Project on reconfigurable high-dynamic range gas sensor systems.  相似文献   

17.
Unity-gain voltage followers and unity-gain current followers have attracted attention in the recent literature in the context of analog signal processing as well as signal generation because of the advantages of wider bandwidth and low power consumption of these active elements as compared to other more complex building blocks. Motivated by these advantages, followers have been used as alternatives to other more complex building blocks in the realisation of filters, oscillators and more recently, in impedance converters. Although some configurations for realizing sinusoidal oscillators using unity-gain voltage/current followers have been described in the earlier literature, only one of them is a second-order single-resistance-controlled oscillator but requires as many as eight followers. This paper derives, through a state-variable synthesis approach, a number of new follower-based single-resistance-controlled oscillators requiring a much smaller number (only two to four) of followers. The new circuits are shown to possess a number of other interesting features. The workability of the new structures has been confirmed by SPICE simulation results using CMOS-based followers. S.S. Gupta was born on July 2, 1962 at Kalinjer (Banda), UP, India. He obtained B.E. in 1982 (from Government Engineering College, Rewa, India) and M.E. (Honors) in 1988 (from Motilal Nehru National Institute of Technology, Allahabad, India)- both in Electrical Engineering. He worked as a Lecturer in Electrical Engineering Department of Motilal Nehru National Institute of Technology, Allahabad during 1984–85. He worked as Design Engineer at Bharat Heavy Electricals Limited, Jhansi during 1985–87 before joining Ministry of Industry, Govt. of India in 1988 where he worked as Assistant Development Officer till June 2000. Since June 2000, he is working as Assistant Professor in the Division of Electronics and Communication Engineering, Netaji Subhas Institute of Technology, New Delhi. His teaching and research interest are in the areas of Network Synthesis and Filter Design, Analog Integrated Circuits and Signal Processing, Bipolar and MOS current mode circuit design and chaotic nonlinear circuits and he has published thirteen papers in various international journals of repute. Raj Senani was born on March 14, 1950 at Budaun, UP, India. He received B.Sc. from Lucknow University, B.Sc. Engg. from Harcourt Butler Technological Institute, Kanpur, M.E. (Honors) from Motilal Nehru National Institute of Technology, Allahabad and Ph.D. in Electrical Engg. from the University of Allahabad. Dr. Senani held the positions of Lecturer (1975–1986) and Reader (1987–1988) at the Electrical Engineering Department of M.N.R. Engineering College, Allahabad. He joined the Electronics and Communication Engineering (ECE) Department of the Delhi Institute of Technology (DIT), Delhi in 1988 as an Assistant Professor. He became a Professor in 1990. Since then, he has served as Head, ECE Department (1990–1993, 1997–1998), Head Applied Sciences (1993–1996), Head, Manufacturing Processes and Automation Engineering (1996–1998), Dean Research (1993–1996), Dean Academic (1996–1997), Dean Administration (1997–1999), Dean Post Graduate Studies (1997–2001), Director, Netaji Subhas Institute of Technology (NSIT) during June 1996–September 1996, February 1997–June 1997 and May 2003–January 2004. He is currently functioning as Head, Division of ECE at NSIT (2000-till date). Professor Senani's teaching and research interests are in the areas of Circuits, Systems and Signal Processing, Bipolar and CMOS analog integrated circuits, Current-mode Signal processing, Electronic Instrumentation, Chaotic nonlinear circuits and Log-domain/Translinear circuits. He has authored or co-authored 100 research papers in the above areas which have been published in IEEE (USA), IEE (UK) and other international journals of repute. He served as an Honorary Editor of the Research Journal of the Institution of Electronics and Telecommunication Engineers (IETE, India) during 1990–1995, in the area of Circuits and Systems and has been a Member of the Editorial Board of the IETE Journal on Education since 1995. He has been functioning as Editorial reviewer for a number of IEEE (USA), IEE (UK) and other international journals of repute. He is currently serving as an Associate Editor for the Journal on Circuits, Systems and Signal Processing, Birkhauser Boston (USA). He is listed in several editions of Marquis' Who's Who in the World, Marquis' Who's Who in Science and Engineering, Marquis' Who' Who in Finance and Industry (all published from N.J., USA during 1998–2004); 2000 Outstanding Scholars of the 21st Century and Outstanding people of the 20th Century (both published by International Biographical Centre, Cambridge); Indo-American Who's Who (2001), Indo-Asian Who's Who (2003), Asia's Who's Who of Men & Women of Achievement (2003), Asia/Pacific Who's Who (2004) and a number of other international biographical directories.  相似文献   

18.
An MPEG-4 video coding SOC design is presented in this paper. We adopt platform-based architecture with an embedded RISC core and efficient memory organization. A motion estimator supporting predictive diamond search and spiral full search is implemented for compromise between compression performance and design cost. The proposed data reuse scheme reduces required memory access bandwidth. For texture coding path, an interleaving DCT/IDCT scheduling with substructure sharing technique is proposed. Several key modules are integrated into an efficient platform in hardware/software co-design fashion. The cost-efficient video encoder SOC consumes 256.8 mW at 40 MHz and achieves real-time encoding of 30 CIF (352×288) frames per second. Yung-Chi Chang was born in Kaohsiung, Taiwan, R.O.C., in 1975. He received the B.S. and M.S. degrees from the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., in 1998 and 2000, respectively, where he is currently pursuing the Ph.D. degree in the Graduate Institute of Electrical Engineering. His research interests include video coding algorithms and VLSI architectures for image/video processing. Wei-Min Chao was born in Taoyuan, Taiwan, R.O.C., in 1977. He received the B.S. and M.S. degrees from the Department of Electronics Engineering, National Taiwan University in 2000 and 2002 separately. His research interests include video coding algorithms and VLSI architecture for image and video processing. Chih-Wei Hsu was born in Taipei, Taiwan, in 1979. He received the B.S.E.E and M.S.E.E degrees from National Taiwan University (NTU), Taipei, in 2001 and 2003, respectively. He joined MediaTek, Inc., Hsinchu, Taiwan, in 2003, where he develops integrated circuits related to multimedia systems and optical storage devices. His research interests include object tracking, video coding, baseband signal processing, and VLSI design. Liang-Gee Chen was born in Yun-Lin, Taiwan, in 1956. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from National Cheng Kung University, Tainan, Taiwan, in 1979, 1981, and 1986, respectively. He was an Instructor (1981-1986), and an Associate Professor (1986-1988) in the Department of Electrical Engineering, National Cheng Kung University. In the military service during 1987 to 1988, he was an Associate Professor in the Institute of Resource Management, Defense Management College. In 1988, he joined the Department of Electrical Engineering, National Taiwan University. During 1993 to 1994 he was a Visiting Consultant of DSP Research Department, AT & T Bell Lab, Murray Hill. In 1997, he was a visiting scholar of the Department of Electrical Engineering, University of Washington, Seattle. During 2001 to 2004, he was the first director of the Graduate Institute of Electronics Engineering (GIEE) in National Taiwan University (NTU). Currently, he is a Professor of the Department of Electrical Engineering and GIEE in NTU, Taipei, Taiwan. He is also the director of the Electronics Research and Service Organization in Industrial Technology Research Institute, Hsinchu, Taiwan. His current research interests are DSP architecture design, video processor design, and video coding systems. Dr. Chen has served as an Associate Editor of IEEE Transactions on Circuits and Systems for Video Technology since 1996, as Associate Editor of IEEE Transactions on VLSI Systems since 1999, and as Associate Editor of IEEE Transactions on Circuits and Systems II since 2000. He has been the Associate Editor of the Journal of Circuits, Systems, and Signal Processing since 1999, and a Guest Editor for the Journal of Video Signal Processing Systems. He is also the Associate Editor of the Proceedings of the IEEE. He was the General Chairman of the 7th VLSI Design/CAD Symposium in 1995 and of the 1999 IEEE Workshop on Signal Processing Systems: Design and Implementation. He is the Past-Chair of Taipei Chapter of IEEE Circuits and Systems (CAS) Society, and is a member of the IEEE CAS Technical Committee of VLSI Systems and Applications, the Technical Committee of Visual Signal Processing and Communications, and the IEEE Signal Processing Technical Committee of Design and Implementation of SP Systems. He is the Chair-Elect of the IEEE CAS Technical Committee on Multimedia Systems and Applications. During 2001--2002, he served as a Distinguished Lecturer of the IEEE CAS Society. He received the Best Paper Award from the R.O.C. Computer Society in 1990 and 1994. Annually from 1991 to 1999, he received Long-Term (Acer) Paper Awards. In 1992, he received the Best Paper Award of the 1992 Asia-Pacific Conference on circuits and systems in the VLSI design track. In 1993, he received the Annual Paper Award of the Chinese Engineer Society. In 1996 and 2000, he received the Outstanding Research Award from the National Science Council, and in 2000, the Dragon Excellence Award from Acer. He is a member of Phi Tan Phi.  相似文献   

19.
Maximum A Posteriori (MAP) decoding is a crucial enabler of turbo coding and other powerful feedback-based algorithms. To allow pervasive use of these techniques in resources constrained systems, it is important to limit their implementation complexity, without sacrificing the superior performance they are known for. We show that introducing traceback information into the MAP algorithm, thereby leveraging components that are also part of Soft-Output Viterbi Algorithms (SOVA), offers two unique possibilities to simplify the computational requirements. Our proposed enhancements are effective at each individual decoding iteration and therefore provide gains on top of existing techniques such as early termination and memory optimizations. Based on these enhancements, we will present three new architectural variants for the decoder. Each one of these may be preferable depending on the decoder memory hardware requirements and number of trellis states. Computational complexity is reduced significantly, without incurring significant performance penalty.
Curt SchurgersEmail:

Curt Schurgers   is currently an assistant professor at the University of California, San Diego. He received his M.S. degree from the Katholieke Universiteit Leuven in Belgium in 1997, and his Ph.D. from UCLA in 2002. He was also a researcher at the Interuniversity Microelectronics Center in Belgium (1997-1999), and a postdoctoral researcher at MIT (2003). His research interests include energy efficient communication systems, sensor networks and underwater networks. Anantha P. Chandrakasan   received the B.S, M.S. and Ph.D. degrees in Electrical Engineering and Computer Sciences from the University of California, Berkeley, in 1989, 1990, and 1994 respectively. Since September 1994, he has been with the Massachusetts Institute of Technology, Cambridge, where he is currently the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering. He was a co-recipient of several awards including the 1993 IEEE Communications Society’s Best Tutorial Paper Award, the IEEE Electron Devices Society’s 1997 Paul Rappaport Award for the Best Paper in an EDS publication during 1997, the 1999 DAC Design Contest Award, the 2004 DAC/ISSCC Student Design Contest Award, the 2007 ISSCC Beatrice Winner Award for Editorial Excellence and the 2007 ISSCC Jack Kilby Award for Outstanding Student Paper. His research interests include low-power digital integrated circuit design, wireless microsensors, ultra-wideband radios, and emerging technologies. He is a co-author of Low Power Digital CMOS Design (Kluwer Academic Publishers, 1995), Digital Integrated Circuits (Pearson Prentice-Hall, 2003, 2nd edition), and Subthreshold Design for Ultra-Low Power Systems (Springer 2006). He is also a co-editor of Low Power CMOS Design (IEEE Press, 1998), Design of High-Performance Microprocessor Circuits (IEEE Press, 2000), and Leakage in Nanometer CMOS Technologies (Springer, 2005). He has served as a technical program co-chair for the 1997 International Symposium on Low Power Electronics and Design (ISLPED), VLSI Design '98, and the 1998 IEEE Workshop on Signal Processing Systems. He was the Signal Processing Sub-committee Chair for ISSCC 1999–2001, the Program Vice-Chair for ISSCC 2002, the Program Chair for ISSCC 2003, and the Technology Directions Sub-committee Chair for ISSCC 2004–2008. He was an Associate Editor for the IEEE Journal of Solid-State Circuits from 1998 to 2001. He served on SSCS AdCom from 2000 to 2007 and he was the meetings committee chair from 2004 to 2007. He is the Technology Directions Chair for ISSCC 2009. He is the Director of the MIT Microsystems Technology Laboratories.   相似文献   

20.
In this paper, a 1-V bulk-driven analog winner-takes-all circuit with programmable k-winners capability is proposed. By presetting a set of binary bits, the desired k-winners-take-all or k-losers-take-all function is programmable. The proposed upward-and-downward searching greatly improves the response time. The chip has been fabricated with a 0.25-μm CMOS technology. Simulated results show that the response time of the winner-takes-all circuit is 50 μs under 5-mV identified resolution. The input range is approximately to be rail-to-rail. This work was in part supported by the Chip Implementation Center and the MOE Program of Promoting Academic Excellence of Universities under the Grant EX-93-E-FA09-5-4. Yu-Cherng Hung was born in Changhua, Taiwan, R.O.C., in 1964. He received the M. S. degree in electronics engineering from the National Chiao Tung University, Hsinchu, Taiwan, R.O.C., in 1992, and the Ph.D. degree in electrical engineering from National Cheng Kung University, Tainan, Taiwan, R.O.C., in 2004. From Dec. 1986 to Jan. 2005, he was with the Division of Computer/Information, Chinese Petroleum Corp., Taiwan. He is currently an Assistant Professor with the Department of Electronic Engineering, National Chin-Yi Institute of Technology, Taiwan, R.O.C. His main research interests include analog circuit design, low-voltage VLSI design, and neural network applications. Dr. Hung is a Member of Phi Tau Phi Honorary Scholastic Society, IEEE, and the Institute of Electronics, Information, and Communications Engineers (IEICE). Bin-Da Liu received the Ph.D. degrees in electrical engineering from the National Cheng Kung University, Tainan, Taiwan, R.O.C., in 1983. Since 1977, he has been on the faculty of the National Cheng Kung University, where he is currently a Distinguished Professor in the Department of Electrical Engineering and the Director of the SoC Research Center. During 1983–1984, he was a Visiting Assistant Professor in the Department of Computer Science, University of Illinois at Urbana-Champaign. During 1988–1992, he was the Director of Electrical Laboratories, National Cheng Kung University. He was the Associate Chair of the Electrical Engineering Department during 1996–1999 and the Chair during 1999–2002. Since 1995, he has been a Consultant of the Chip Implementation Center, National Applied Research Laboratories, Hsinchu, Taiwan. He has published more than 200 technical papers. He also contributed chapters in the book Neural Networks and Systolic Array Design (D. Zhang Ed. Singapore: World Scientific, 2002) and the book Accuracy Improvements in Linguistic Fuzzy Modeling (J. Casillas, O. Cordón, F. Herrera, and L. Magdalena Eds. Heidelberg, Germany: Springer-Verlag, 2003). His current research interests include low power circuit, neural network circuit, CMAC neural network, analog neural network architecture, design of programmable cellular neural networks, and very large-scale integration implementation of fuzzy/neural circuits and audio/video signal processors. Dr. Liu is a Fellow of IEEE and the Vice President of Region 10, IEEE Circuits and Systems Society. He served as a CAS Associate Editor of IEEE Circuits and Devices Magazine and an Associate Editor of IEEE Transactions on Circuits and Systems I: Regular Papers. He is serving as an Associate Editor of IEEE Transactions on Very Large Scale Integration (VLSI) Systems. Chung-Yang Tsai was born in Mian-Li, Taiwan, R.O.C. He received the B.S. and M.S. degrees both in electrical engineering from the National Cheng Kung University, Tainan, Taiwan, R.O.C., in 2001 and 2003, respectively. His research interests include very large-scale integration design and signal processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号