首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
该研究固定复配乳化剂总质量分数为0.3%,使用亲水乳化剂吐温-80和亲油乳化剂单甘油酯以不同比例复配制备搅打稀奶油,从乳液界面性质及脂肪结晶性质变化的角度研究其协同作用对产品品质的影响。结果表明,当吐温-80与单甘油酯的质量比由1∶1逐渐升至1∶4,乳液液相蛋白质浓度及表观黏度下降,结晶脂肪耐热性增强,β′晶型明显,产品打发率上升,泡沫析水率下降;当吐温-80与单甘油酯的质量比变为1∶5和1∶6时,产品中结晶脂肪β′晶型含量下降,晶体尺寸显著减小,产品打发率下降,泡沫析水率上升。因此,吐温-80与单甘油酯质量比为1∶4,符合工业生产高品质搅打稀奶油的要求,此时产品搅打时间仅需(277.3±2.5) s,打发率达(158.9±1.23)%,搅打泡沫析水率仅(1.55±0.47)%,并且兼具良好的乳液稳定性。  相似文献   

2.
研究了吐温80与单甘酯(MG)、大豆卵磷脂(SL)及微晶纤维素(MC)二元乳化剂的复配HLB值对复合骨汤乳液的乳化稳定效果及感官品质的影响,并通过测定乳液平均粒径D[4,3]及粒径分布、Zeta电位、黏度等指标探讨了复配乳化剂稳定骨汤乳液的内在原因。结果表明,在吐温80-MG的复配HLB值为8,或吐温80-SL的复配HLB值为9,或吐温80-MC的复配HLB值为11时,复合骨汤乳液均表现出良好的乳化稳定性,乳液中乳滴具有最小粒径D[4,3]值和粒径分布系数PDI值,较高的Zeta电位绝对值和乳液黏度值,乳液的感官接受度也最高。吐温80与MG、MC两两复配后具有明显的协同增效作用,但与SL的协同效应不明显,吐温80-MG复配对骨汤乳液的乳化稳定效果优于其他两组二元复配乳化剂。二元乳化剂的复配HLB值显著影响骨汤乳液的感官评分,影响作用与骨汤乳液稳定性及吐温80风味相关。  相似文献   

3.
以月桂酸聚氧乙烯酯LAE和聚乙二醇油酸酯DQA复配为乳化剂,油酸酯QA为平滑剂,制备了平滑剂质量分数大于30%的纺丝油剂乳液体系,研究了乳液组成对其润湿性的影响。结果表明:随着乳液质量分数的增大,乳液表面张力、乳液在丙纶纤维表面的接触角和帆布片在乳液中的润湿时间均逐渐减小;并且乳液存在临界胶束浓度,小于临界胶束浓度时,乳液的表面张力、乳液在丙纶纤维表面的接触角和润湿时间均随乳液质量分数的增大而迅速减小,超过临界胶束浓度后,乳液质量分数对乳液性能的影响变小。另外,平滑剂质量分数增大和复配乳化剂HLB值增大均会导致润湿性变差。  相似文献   

4.
以搅打充气乳液为对象,运用Turbiscan、流变仪、粒度仪、显微镜测定乳液充气前后的物理稳定性,探究食品乳化剂HLB值(3.8~15.0)对棕榈油基乳液功能性质的影响。结果表明:HLB值在3.8~10.0范围对于乳液稳定性影响不明显,但进一步增加HLB值,导致乳液热稳定性下降,颗粒聚集严重;在低乳化剂HLB值(3.8~10.0)范围内,乳液搅打充气时间随着HLB值的增加而延长,样品起泡率也随之增加,但硬度变化不明显;当HLB值为10.0时,乳液的搅打起泡率达到最大,为3.17;进一步增加乳化剂HLB值(12.0~15.0),样品搅打充气时间明显缩短,表明乳液脂肪部分聚集更容易发生,但得到的样品硬度偏大,且样品的稳定性随着时间的延长明显下降。最终确定最佳乳化剂HLB值为10.0。  相似文献   

5.
通过复配吐温和司盘获得不同亲水亲油平衡(hydrophile lipophilic balance,HLB)值的复配乳化剂,探究乳化剂HLB值对壳聚糖精油复合膜的物理和结构性能的影响。结果表明,HLB值在9~15之间,单独乳化剂与精油体积比1∶5和1∶10均可获得较小的精油粒径。乳化剂加入壳聚糖精油复合膜中,随着乳化剂HLB值的升高,膜乳液的粒度逐渐减小。与加入精油的对照膜相比,乳化剂的添加可以提高膜的L*值,降低膜的厚度、膨胀度和水溶性,但乳化剂HLB值对膜的抗拉强度和断裂伸长率影响较小。在乳化剂HLB值11~15之间时,可获得较高的DPPH自由基清除率。从扫描电镜结果来看,乳化剂能显著降低复合膜中精油的粒径。综合来看,HLB值为13时,能获得性能较好的复合膜。  相似文献   

6.
本研究针对紫苏油不饱和脂肪酸含量高,在储存过程中易氧化等特点,采用高压均质法制备紫苏油乳液,通过激光粒度仪分析乳液粒径大小与分布,通过TURBISCAN浓缩体系稳定性分析仪监测乳液稳定性的变化趋势,探究乳化剂用量、油水比例、高压均质的压力和循环次数及HLB值对紫苏油乳液稳定性的影响,以提供一种紫苏油缓释方法,拓宽紫苏油在食品中的应用范围。试验结果表明,紫苏油乳液粒径主要分布在300~670nm;乳化剂浓度由0.2%增加至1.2%,乳液粒径下降,稳定性提高;浓度为1.2%时,乳液平均粒径(d=513nm)最小。随着油水比增加,紫苏油乳液稳定性下降;高压均质过程对乳液的稳定性有显著影响,压力越大,循环次数越高,乳液越稳定。与单一乳化剂(HLB=15)相比,复配乳化剂(HLB=8~14)可制得更为稳定的乳液,且当HLB值为11时,紫苏油乳液的平均粒径(d=374nm)最小,乳液稳定性最佳。  相似文献   

7.
大豆磷脂是UHT稀奶油适合的乳化剂。适合的复合乳化剂HLB值约为7.4。稀奶油的均质宜采用低压均质,为4×106-5×106Pa。与常温贮存相比,低温贮存时,稀奶油的脂肪球聚集、结晶、固化,稀奶油脂肪球体积平均粒径增大。在6个月的保质期内,随着保质期的延长,稀奶油脂肪球体积平均粒径由2.833μm升高到11.770μm,搅打率从115%降低到92%。文中所讨论的稀奶油产品适合蛋挞制作,蛋挞切面整齐、组织致密,无析水现象。  相似文献   

8.
天然奶油油包水乳状液的研究   总被引:3,自引:0,他引:3  
为得到对天然奶油乳状液稳定性效果较好的乳化剂,通过采用HLB值筛选法,对不同的乳化剂进行复配。结果表明,所复配的乳化剂的HLB值在3 6~3 9时所获得的天然奶油油包水乳状液最为稳定。同时,油水比例为1 0 ,乳化剂的添加量在5 %左右时,乳化体系稳定性较好。  相似文献   

9.
乳化剂的HLB值对搅打稀奶油搅打性能的机理研究   总被引:3,自引:2,他引:3       下载免费PDF全文
重点研究了乳化剂的HLB值对搅打稀奶油的脂肪部分附聚率与搅打性能之间的关系.结果表明:高HLB值乳化剂在促进脂肪球的部分附聚的能力比低HLB值乳化剂强.HLB值低于6时,则部分附聚速度缓慢且部分附聚率低于50%,形成的泡沫结构稳定性差;乳化剂的HLB值在6~8之间,部分附聚速度适中,能够获得60%左右的脂肪部分附聚率和形成较理想的泡沫结构;HLB值大于9时,部分附聚速度过快且部分附聚率高于80%,形成的泡沫结构粗糙且稳定性差.  相似文献   

10.
以液体石蜡为油相,芭蕉芋淀粉及单体丙烯酸溶液为水相,乳化剂Span-80和Tween-80复配使用,考察了油水比、乳化剂用量、HLB值以及芭蕉芋淀粉颗粒大小等因素对反相乳液的形成及其稳定性的影响和乳液电导率变化规律。结果表明:体系乳化剂的HLB值对反相乳液的形成和稳定性有着显著性的影响,在HLB为7.36,油水比为V(油)∶V(水)=1.2∶1,乳化剂的质量分数为30%的条件下形成稳定的W/O型反相乳液,淀粉颗粒越小越有利于提高树脂的吸水倍率。  相似文献   

11.
乳化剂用量对搅打稀奶油搅打性能和品质的影响机理研究   总被引:1,自引:1,他引:0  
研究了乳化剂用量对搅打稀奶油的乳浊液粒度分布、脂肪球部分聚结、液相蛋白浓度、感官品质和泡沫稳定性的影响。研究结果表明:乳浊液冷却及解冻后脂肪球粒径随乳化剂用量增加而减小,随着乳化剂用量增加,脂肪部分聚结速度和液相蛋白质浓度增加速度加快,搅打起泡率和感官品质以乳化剂用量为0.60%时最好,搅打稀奶油稳定时间随乳化剂用量增加呈先增加后下降趋势,当乳化剂用量为0.60%时,稳定时间达到最大2.4h。综合考虑,当乳化剂HLB值为7,乳化剂用量为0.60%时,搅打稀奶油搅打性能和品质最佳。  相似文献   

12.
本研究以大豆油体为原料,探究了不同乳化剂(大豆皂苷、大豆卵磷脂、大豆多糖、吐温80)对大豆基搅打稀奶油的粒径分布、粘度、乳状液稳定性、搅打起泡率、泡沫稳定性的影响。结果表明,不同乳化剂对大豆基搅打奶油的乳状液特性和搅打特性有一定影响。添加吐温80的大豆基搅打稀奶油有较小的粒径分布,ζ-电位为-30.3 mV,粘度比加其他大豆乳化剂的小,而且搅打起泡性最高,达到112.4%,但是泡沫稳定性只有2.1%。添加大豆乳化剂的大豆基搅打稀奶油具有类似的乳状液特性,但是添加大豆卵磷脂的大豆基搅打稀奶油比其他两种大豆乳化剂具有更高的膨胀率(134.5%),而添加大豆多糖的大豆基搅打稀奶油具有更好的泡沫稳定性(1.2%)。  相似文献   

13.
This work aims at improving the textural and whipping properties of whipped cream by the addition of milk fat globule membrane protein. The determination of particle size distribution and average diameter of whipped cream showed that the small particle size was shifted to a larger range after milk fat globule membrane protein was added. The average particle size (d3,2) of whipped cream reached a maximum value of 5.05 µm at 1% milk fat globule membrane protein, while slowly decreased with increasing milk fat globule membrane protein levels from 2% to 5%. In addition, the partial coalescence of fat increased with the increase of milk fat globule membrane protein levels, and the correlation between the whipping time and the overrun of whipped cream was positive. The addition of milk fat globule membrane protein also altered the rheological behaviour of whipped cream, resulting in the increase of modulus G′ and the loss modulus G″. The results also indicated that higher milk fat globule membrane protein level decreased the serum loss of whipped cream while improved its stability. While milk fat globule membrane protein levels had no significant effect on viscosity, its increasing levels effectively improved the hardness, consistency, and viscosity of whipped cream.  相似文献   

14.
The effects of addition of an oil-soluble emulsifier on cream solidification after the thermal treatment, in which the cream was temporarily heated and then cooled, were investigated. Thirteen oil-soluble emulsifiers were tested for the ability to retard the cream solidification. Two emulsifiers, namely the sucrose esters of fatty acids that have low hydrophilic–lipophilic balance (HLB) values (SE-L) and the citric acid esters of monoglyceride (CMG), showed an inhibitory effect on the cream solidification. The increase in solid fat content (SFC) in cream was delayed by SE-L addition during the recooling process in the thermal treatment. SE-L inhibited the cream solidification presumably by modifying the fat crystallisation behaviour in oil droplets. On the other hand, the SFC changing pattern of the cream containing CMG during the recooling process was not different from that of solidified cream, suggesting that a mechanism other than fat crystallisation was involved in the inhibition of the cream solidification by this emulsifier.  相似文献   

15.
MICROSTRUCTURE AND RHEOLOGICAL BEHAVIOR OF WHIPPING CREAM   总被引:1,自引:0,他引:1  
The mechanism of the formation of a rigid foam structure during whipping of reconstituted whipping cream was investigated. The rheological properties of whipped cream were estimated from an analysis of shear creep curves by a four element model. The values of each element increased exponentially during the process of whipping. From cryo-SEM observation, the surface of air bubbles consisted of a thin membrane which was penetrated by fat globules. Also, fat globules in the serum were joined together by free fat to form a framework structure.
The relationship between the rheological properties and microstructure of whipped cream was deduced from the rheological properties of two model systems. It is believed that whipped cream is a mixed matrix of a SOB O/W structure and a stiffer W/O structure.  相似文献   

16.
Xanthan gum was used as thickening agent to prepare whipped cream in this work. A dose-dependent effect was observed on the average particle size (d3,2) of whipped cream. At each xanthan gum level (0.025–0.125%) used, whipping time also showed a positive effect on the average particle size. With the increase of xanthan gum level or whipping time, the partial coalescence of fat in the whipped cream increased gradually. However, xanthan gum level showed no significant effect on the overrun of whipped cream. The textural characteristics of whipped cream were also investigated and the results indicated that a positive correlation was found between xanthan gum level and firmness, cohesiveness or viscosity of whipped cream. A different tendency was detected for consistency. The consistency of whipped cream increased with the increase of xanthan gum level to 0.100%, thereafter decreased.  相似文献   

17.
The effects of whipping temperature (5 to 15°C) on the whipping (whipping time and overrun) and rheological properties of whipped cream were studied. Fat globule aggregation (aggregation ratio of fat globules and serum viscosity) and air bubble factors (overrun, diameter, and surface area) were measured to investigate the mechanism of whipping. Whipping time, overrun, and bubble diameters decreased with increasing temperature, with the exception of bubble size at 15°C. The aggregation ratio of fat globules tended to increase with increasing temperature. Changes in hardness and bubble size during storage were relatively small at higher temperatures (12.5 and 15°C). Changes in overrun during storage were relatively small in the middle temperature range (7.5 to 12.5°C). From the results, the temperature range of 7.5 to 12.5°C is recommended for making whipped creams with a good texture, and a specific temperature should be decided when taking into account the preferred overrun. The correlation between the whipped cream strain hardness and serum viscosity was high (R2 = 0.906) and persisted throughout the temperature range tested (5 to 15°C). A similar result was obtained at a different whipping speed (140 rpm). The multiple regression analysis in the range of 5 to 12.5°C indicated a high correlation (R2 = 0.946) in which a dependent variable was the storage modulus of whipped cream and independent variables were bubble surface area and serum viscosity. Therefore, fat aggregation and air bubble properties are important factors in the development of cream hardness. The results of this study suggest that whipping temperature influences fat globule aggregation and the properties of air bubbles in whipped cream, which alters its rheological properties.  相似文献   

18.
In this work, hydroxypropyl methylcellulose (HPMC) was added into whipped cream for improving its textural and whipping properties. By determination of the particle size distribution, a single peak for the emulsion after homogenization and two distinguishable peaks for the emulsion after whipping for 5 min were observed. With the increase of HPMC level, the average particle size (d3,2) decreased for the emulsion after homogenization and increased for the emulsion after whipping for 5 min. Both whipping time and HPMC level showed positive effects on the partial coalescence of fat globules. The partial coalescence of whipped cream with 0.125% HPMC after whipping for 5 min reached 56.25%, significantly (P < 0.05) higher than that (4.77%) without whipping treatment. Surface protein concentration was measured to evaluate the change of protein content at the droplet interface. The results indicated that the increase of HPMC level could decrease the surface protein concentration slightly. The overrun of whipped cream slightly increased when the HPMC level increased in the range of 0.025–0.125%. Firmness, cohesiveness, consistency and viscosity of whipped cream were analysed in this work. HPMC showed a positive dose-dependent effect on all these textural properties.  相似文献   

19.
This study investigates the effect of applying a time–temperature profile to natural and recombined cream to influence partial coalescence and, consequently, the whipping quality. To date, no clear relationship exists between the consequences of tempering on a microstructural level, partial coalescence, and whipping properties. Milk fat crystallisation was analysed using differential scanning calorimetry and the internal arrangement of fat crystals was visualised with cryo-scanning electron microscopy. Shear-induced partial coalescence and whipping properties were studied. Shear-induced partial coalescence was promoted, attributed to the observed changes in the fat crystal network. The effects on whipping properties were different for natural and recombined cream and thus dependent upon the interfacial composition. Consolidation of the partially coalesced fat droplet network by tempering increased the stability of whipped recombined cream during cold storage. Tempering is a promising tool to alter the susceptibility to partial coalescence by changing the internal fat crystal network, and influencing whippability.  相似文献   

20.
该文在黄油基搅打稀奶油经高压均质、热处理后分别使用1.0~5.0 MPa压力进行二段均质处理,并以未经二段均质处理的产品为对照,比较经不同二段均质压力处理后产品稳定性及搅打品质的变化。实验发现,对照产品脂肪球粒度分布出现明显双峰现象,乳液稳定性差,搅打时间为372.00 s,起泡率仅193.70%,并且在光学显微镜下观察到大量絮凝的脂肪球簇;当二段均质压力在1.0~ 3.0 MPa范围内增大,产品脂肪球平均粒径减小,产品稳定性增强,搅打时间缩短,打发率上升,絮凝的脂肪球簇的数量明显减少;当二段均质压力达到3.0 MPa,产品粒度分布趋于稳定,搅打时间仅需306.50 s,起泡率达235.10%,光学显微镜下未观察到明显絮凝现象。相比对照组,经3.0 MPa压力处理后的产品稳定性更好,搅打成型时间由372.00 s缩短至306.50 s,起泡率由193.70%提高至235.10%,实验结果表明,在搅打稀奶油生产中使用3.0 MPa压力进行二段均质可有效阻止乳液脂肪球絮凝,提高产品的稳定性及搅打品质,可满足工业生产高品质搅打稀奶油的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号