首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用有机溶剂法回收了废旧锂离子电池中的钛酸锂负极材料,并对回收的钛酸锂材料的结构、形貌和电化学性能进行了测试。XRD结果表明,材料除炭后添加适量锂源进一步合成得到的产物具有尖晶石结构,且不含其他的杂质。SEM图像显示,其颗粒分布均匀、无团聚现象。EIS结果表明,最终回收的钛酸锂电极材料比未添加锂源进行煅烧处理的材料具有较小的电荷转移阻抗和较高的锂离子扩散系数。在0.1 C倍率下,经过100次循环后其容量保持率为92.4%,具有优异的循环稳定性和可逆性,可以实现循环利用。  相似文献   

2.
锂离子电池的高功率密度和高能量密度等特性使其成为电动汽车能源和新能源电网储能的重要载体。功率性能和安全特性是锂离子电池发展的两个主要挑战。钛酸锂Li4Ti5O12材料因具有良好的结构稳定性、安全性能、长循环寿命、高功率特性和高低温放电性能,被认为是锂电池负极材料的良好备选。综述了以钛酸锂材料为负极的锂离子电池的相关工作,介绍了钛酸锂材料的结构、电化学特性、制备方法和作为电池负极材料面临的主要问题,重点介绍了钛酸锂负极电池的全电池性能和健康状态研究等方面。  相似文献   

3.
Li4Ti5O12 is a very promising anode material for lithium secondary batteries. To improve the material's rate capability and pile density is considered as the important researching direction. One effective way is to prepare powders composed of spherical particles containing carbon black. A novel technique has been developed to prepare spherical Li4Ti5O12/C composite. The spherical precursor containing carbon black is prepared via an “outer gel” method, using TiOCl2, C and NH3 as the raw material. Spherical Li4Ti5O12/C powders are synthesized by sintering the mixture of spherical precursor and Li2CO3 in N2. The investigation of TG/DSC, SEM, XRD, Brunauer–Emmett–Teller (BET) testing, laser particle size analysis, tap-density testing and the determination of the electrochemical properties show that the Li4Ti5O12/C composite prepared by this method are spherical, has high tap-density and excellent rate capability. It is observed that the tap-density of spherical Li4Ti5O12/C powders (the mass content of C is 4.8%) is as high as 1.71 g cm−3, which is remarkably higher than the non-spherical Li4Ti5O12. Between 1.0 and 3.0 V versus Li, the initial discharge specific capacity of the sample is as high as 144.2 mAh g−1, which is still 128.8 mAh g−1 after 50 cycles at a current density of 1.6 mA cm−2.  相似文献   

4.
Li4Ti5O12 sub-micro crystallites are synthesized by ball-milling and one-step sintering under different heat treatment temperature from 700 °C to 900 °C. The composite electrode of Li4Ti5O12/carbon nanotubes (CNTs) is prepared by mixing powders of Li4Ti5O12 and CNTs in different weight ratios. Before mixing, in order to disperse CNTs in Li4Ti5O12 particles preferably, the CNTs are cut and dispersed by hyperacoustic shear method and the composite electrodes of low resistance of about 20–30 Ω are obtained. The composite electrodes have steady discharge platform of 1.54 V and large specific capacity, initial discharge capacities are 168, 200, 196, 176 mAh g−1 in different Li4Ti5O12:CNTs weight ratios of 94:1, 92:3, 90:5, 88:7 respectively at 0.1 C discharge rate for the Li4Ti5O12 synthesized in an optimized heat treatment temperature of 800 °C. In our experimental range, the composite electrode in a CNTs weight ratio of 3:92 shows the best performance under different discharge rate such as the initial capacity is 200 mAh g−1 with discharge capacities retention rate of nearly 100%. Its capacity is about 151 mAh g−1 under 20 C rate discharge condition with excellent high-rate performance. There is almost no decline after 20th cycles under 10 C rate discharging condition.  相似文献   

5.
Spinel lithium titanate, Li4Ti5O12, with novel hollow-sphere structure was fabricated by a sol–gel process using carbon sphere as template. The effect of the hollow-sphere structure as well as the wall thickness on the Li storage capability and high rate performance was electrochemically evaluated. High specific capacity, especially better high rate performance was achieved with this Li4Ti5O12 hollow-sphere electrode material with thin wall thickness. It is believed that this macroporous hollow-sphere structure has shortened the Li diffusion distance, increased the contact area between Li4Ti5O12 and electrolyte, and also led to better mixing of the active material with AB. All these factors have resulted in the good rate capability of the hollow-sphere structured Li4Ti5O12 electrode material.  相似文献   

6.
钛酸锂作为储能电池负极材料,在长循环和安全性上有突出的表现。通过对室温1C和2C倍率下循环的三元+钴酸锂/钛酸锂储能电池拆解,结合SEM、FTIR、XRD和EIS等分析手段,发现造成容量衰减和阻抗增大的原因出现在正极,由于正极与电解液发生反应,在表面生成界面膜,并且循环过程中界面膜不稳定,进一步消耗活性锂离子导致。另外,对这款电池的产气分析发现,所产生气体的主要成分为CO2和C2H6,原因可能是在制备电池过程中严格控制水分以及在电解液添加剂方面做了改进。  相似文献   

7.
The all-solid-state Li–In/Li4Ti5O12 cell using the 80Li2S·20P2S5 (mol%) solid electrolyte was assembled to investigate rate performances. It was difficult to obtain the stable performance at the charge current density of 3.8 mA cm−2 in the all-solid-state cell. In order to improve the rate performance, the pulverized Li4Ti5O12 particles were applied to the all-solid-state cell, which retained the reversible capacity of about 90 mAh g−1 at 3.8 mA cm−2. The 70Li2S·27P2S5·3P2O5 glass–ceramic, which exhibits the higher lithium ion conductivity than the 80Li2S·20P2S5 solid electrolyte, was also used. The Li–In/70Li2S·27P2S5·3P2O5 glass–ceramic/pulverized Li4Ti5O12 cell was charged at a current density higher than 3.8 mA cm−2 and showed the reversible capacity of about 30 mAh g−1 even at 10 mA cm−2 at room temperature.  相似文献   

8.
We report the effects of electrode thickness, cathode particle size and morphology, cathode carbon coating matching ratio and laminate structure on the electrochemical characteristics of nanosized Li4Ti5O12–LiMn2O4 batteries. We show that a correct adjustment of these parameters resulted in significant improvements in power capability and cycle-life of such devices, making them competitive, low-cost and safe battery chemistry for next generation Li-ion batteries. In addition, Li4Ti5O12 reversible specific capacity beyond three Li-ions intercalation is reported.  相似文献   

9.
Compared with traditional anode materials, spinel-structured Li4Ti5O12 (LTO) with “zero-strain” characteristic offers better cycling stability. In this work, by a wet-chemistry synthesis method, LTO anode materials have been successfully synthesized by using CH3COOLi·2H2O and C16H36O4Ti as raw materials. The results show that sintering conditions significantly affect purity, uniformity of particle sizes, and electrochemical properties of as-prepared LTO materials. The optimized LTO product calcined at 650°C for 20 hours demonstrates small particle sizes and excellent electrochemical performances. It delivers an initial discharge capacity of 242.3 mAh g−1 and remains at 117.4 mAh g−1 over 500 cycles at the current density of 60 mA g−1 in the voltage range of 1.0 to 3.0 V. When current density is increased to 1200 mA g−1, its discharge capacity reaches 115.6 mAh g−1 at the first cycle and remains at 64.6 mAh g−1 after 2500 cycles. The excellent electrochemical performances of LTO can be attributed to the introduction of rutile TiO2 phase and small particle sizes, which increases electrical conductivity and electrode kinetics of LTO. Therefore, as-synthesized LTO in this study can be regarded as a promising anode candidate material for lithium-ion batteries.  相似文献   

10.
The effects of dopant on the electrochemical properties of spinel-type Li3.95M0.15Ti4.9O12 (M = Al, Ga, Co) and Li3.9Mg0.1Al0.15Ti4.85O12 were systematically investigated. Charge–discharge cycling were performed at a constant current density of 0.15 mA cm−2 between the cut-off voltages of 2.3 and 0.5 V, the experimental results showed that Al3+ dopant greatly improved the reversible capacity and cycling stability over the pristine Li4Ti5O12. The substitution of the Ga3+ slightly increased the capacity of the Li4Ti5O12, but did not essentially alleviate the degradation of cycling stability. Dopants such as Co3+ and Mg2+ to some extent worsened the electrochemical performance of the Li4Ti5O12.  相似文献   

11.
Spherical, high tap density, carbon-coated Li4Ti5O12 powders are synthesized by a spray-drying process followed by a facile pitch coating. XRD, SEM, TEM analyses show that the carbon layer uniformly coats the Li4Ti5O12 particles without producing any crystalline changes. We demonstrate that the carbon coating significantly increases the electrical conductivity of Li4Ti5O12 making it an efficient, high rate electrode for lithium cells. The electrochemical tests in fact confirm that the 3.25 wt% carbon-coated Li4Ti5O12 electrode operates with ultra high rate capacity levels, i.e., 100 C and has excellent capacity retention and charge-discharge efficiency for a life extending over 100 cycles.  相似文献   

12.
A Li4Ti5O12-Li0.29La0.57TiO3-Ag electrode composite was fabricated via sintering the corresponding powder mixture. The process achieved a final relative density of 97% the theoretical. Relatively thick, ∼100 μm, electrodes were fabricated to enhance the energy density relatively to the traditional solid-state thin film battery electrodes. The sintered electrode composite delivered full capacity in the first discharge at C/40 discharge rate. Full capacity utilization resulted from the 3D percolated network of both solid electrolyte and metal, which provide paths for ionic and electronic transport, respectively. The electrodes retained 85% of the theoretical capacity after 10 cycles at C/40 discharge rate. The tensile strength and the Young's modulus of the sintered electrode composite are the highest reported values to date, and are at least an order of magnitude higher than the corresponding value of traditional tapecast “composite electrodes”. The results demonstrate the concept of utilizing thick all-solid electrodes for high-strength batteries, which might be used as multifunctional structural and energy storage materials.  相似文献   

13.
Synthesis of the spinel lithium titanate Li4Ti5O12 by an alkoxide-free sol-gel method is described. This method yields highly pure and crystalline Li4Ti5O12 samples at relatively low temperature (850 °C) and via short thermal treatment (2 h). 6Li magic angle spinning nuclear magnetic resonance (MAS NMR) measurements on these samples were carried out at high magnetic field (21.1 T) and over a wide temperature range (295-680 K). The temperature dependence of the chemical shifts and integral intensities of the three 6Li resonances demonstrates the migration of lithium ions from the tetrahedral 8a to the octahedral 16c sites and the progressive phase transition from a spinel to a defective NaCl-type structure. This defective structure has an increased number of vacancies at the 8a site, which facilitate lithium diffusion through 16c → 8a → 16c pathways, hence providing an explanation for the reported increase in conductivity at high temperatures. Molecular dynamics simulations of the spinel oxides Li4+xTi5O12, with 0 ≤ x ≤ 3, were also performed with a potential shell model in the temperature range 300-700 K. The simulations support the conclusions drawn from the NMR measurements and show a significant timescale separation between lithium diffusion through 8a and 16c sites and that out of the 16d sites.  相似文献   

14.
Ta doping in Li4Ti5O12 (Li4Ti4.95Ta0.05O12) as function of different heat-treat atmospheres (oxidizing/reducing) was investigated and compared to Li4Ti5O12 to determine its effect on ionic/electronic conductivity and the charge compensating defects. Under oxidizing conditions Li4Ti4.95Ta0.05O12 was primarily an ionic conductor where the extra charge of Ta was compensated by Ti vacancies. Under reducing conditions Li4Ti4.95Ta0.05O12 was primarily an electronic conductor where the extra charge of Ta was compensated by an electron. The charge compensating defects were confirmed by sintering data.  相似文献   

15.
C. Lai 《Journal of power sources》2010,195(11):3676-3679
Hierarchical structured Li4Ti5O12, assembling from randomly oriented nanosheets with a thickness of about 10-16 nm, is fabricated by a facile hydrothermal route and following calcination. It is demonstrated that the as-prepared sample has good cycle stability and excellent high rate performance. In particular, the discharge capacity of 128 mAh g−1 can be obtained at the high current density of 2000 mA g−1, which is about 87% of that at the low current density of 200 mA g−1 upon cycling, indicating that the as-prepared sample can endure great changes of various discharge current densities to retain a good stability. In addition, the pseudocapacitive effect based on the hierarchical structure, also contributes to the high rate capability of Li4Ti5O12, which can be confirmed in cyclic voltammograms.  相似文献   

16.
Li4Ti5O12/tin phase composites are successfully prepared by cellulose-assisted combustion synthesis of Li4Ti5O12 matrix and precipitation of the tin phase. The effect of firing temperature on the particulate morphologies, particle size, specific surface area and electrochemical performance of Li4Ti5O12/tin oxide composites is systematically investigated by SEM, XRD, TG, BET and charge-discharge characterizations. The grain growth of tin phase is suppressed by forming composite with Li4Ti5O12 at a calcination of 500 °C, due to the steric effect of Li4Ti5O12 and chemical interaction between Li4Ti5O12 and tin oxide. The experimental results indicate that Li4Ti5O12/tin phase composite fired at 500 °C has the best electrochemical performance. A capacity of 224 mAh g−1 is maintained after 50 cycles at 100 mA g−1 current density, which is still higher than 195 mAh g−1 for the pure Li4Ti5O12 after the same charge/discharge cycles. It suggests Li4Ti5O12/tin phase composite may be a potential anode of lithium-ion batteries through optimizing the synthesis process.  相似文献   

17.
The compatibility between dimethyl methylphosphonate (DMMP)-based electrolyte of 1 M LiPF6/EC + DMC + DMMP (1:1:2 wt.) and spinel materials Li4Ti5O12 and LiNi0.5Mn1.5O4 was reviewed, respectively. The cell performance and impedance of 3-V LiNi0.5Mn1.5O4/Li4Ti5O12 lithium-ion cell with the DMMP-based nonflammable electrolyte was compared with the baseline electrolyte of 1 M LiPF6/EC + DMC (1:1 wt.). The nonflammable DMMP-based electrolyte exhibited good compatibility with spinel Li4Ti5O12 anode and high-voltage LiNi0.5Mn1.5O4 cathode, and acceptable cycling performance in the LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell, except for the higher impedance than that in the baseline electrolyte. All of the results disclosed that the 3 V LiNi0.5Mn1.5O4/Li4Ti5O12 lithium-ion battery was a promising choice for the nonflammable DMMP-based electrolyte.  相似文献   

18.
A nanocrystalline Li4Ti5O12-TiO2 duplex phase has been synthesized by a simple basic molten salt process (BMSP) using an eutectic mixture of LiNO3-LiOH-Li2O2 at 400-500 °C. The microstructure and morphology of the Li4Ti5O12-TiO2 product are characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The sample prepared by heat-treating at 300 °C for 3 h (S-1) reveals dense agglomerates of ultra-fine nanocrystalline Li4Ti5O12; with heat treatment at 400 °C for 3 h (S-2), there is a duplex crystallite size (fine < 10 nm, and coarse > 20 nm) of Li4Ti5O12-TiO2; at 500 °C for 3 h (S-3), a much coarser and less-dense distribution of lithium titanate (crystallite size ∼15-30 nm) is observed. According to the results of electrochemical testing, the S-2 sample shows initial discharge capacities of 193 mAh g−1 at 0.2 C, 168 mAh g−1 at 0.5 C, 146 mAh g−1 at 1 C, 135 mAh g−1 at 2 C, and 117 mAh g−1 at 5 C. After 100 cycles, the discharge capacity is 138 mAh g−1 at 1 C with a capacity retention of 95%. The S-2 sample yields the best electrochemical performance in terms of charge-discharge capacity and rate capability compared with other samples. Its superior electrochemical performance can be mainly attributed to the duplex crystallite structure, composed of fine (<10 nm) and coarse (>20) nm nanoparticles, where lithium ions can be stored within the grain boundary interfaces between the spinel Li4Ti5O12 and the anatase TiO2.  相似文献   

19.
Li4Ti4.95V0.05O12 and Li4Ti5O12 powders were successfully prepared by a solid-state method. XRD reveals that both samples have high phase purity. Raman spectroscopy indicates that the Ti–O vibration have a blue shift. SEM shows that Li4Ti4.95V0.05O12 has a slightly smaller particle size and a more regular morphological structure with narrow size distribution than those of Li4Ti5O12. Galvanostatic charge–discharge testing indicates both samples have nearly equal initial capacities at different discharge voltage ranges (0–2 and 0.5–2 V), but Li4Ti4.95V0.05O12 has a higher cycling performance than that of Li4Ti5O12. CV suggests that Li4Ti4.95V0.05O12 has lower electrode polarization and high lithium ion diffusivity in solid-state body of sample, implying that the vanadium doping is beneficial to the reversible intercalation and de-intercalation of Li+. The novel Li4Ti4.95V0.05O12 materials may find promising applications in lithium ion batteries and electrochemical cells due to the excellent electrochemical performace and simple synthesis route.  相似文献   

20.
Self-assembled mesoporous LiFePO4 (LFP) with hierarchical spindle-like architectures has been successfully synthesized via the hydrothermal method. Time dependent X-ray diffraction, scanning electron microscopy, and cross section high resolution transmission electron microscopy are used to investigate the detailed growth mechanism of these unique architectures. Reaction time and pH value play multifold roles in controlling the microstructures of LFP. The LFP particles are uniform mesoporous spindles, which are comprised of numerous single-crystal LFP nanocrystals. As the cathode material for lithium batteries, LFP exhibits high initial discharge capacity (163 mAh g−1, 0.1 C), excellent high-rate discharge capability (111 mAh g−1, 5 C), and cycling stability. These enhanced electrochemical properties can be attributed to this unique microstructure, which will remain structural stability for long-term cycling. Furthermore, nanosizing of LFP nanocrystals can increase the electrochemical reaction surface, enhance the electronic conductivity, and promote lithium ion diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号