首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A natural gas (NG) fired power plant is designed with virtually zero emissions of pollutants, including CO2. The plant operates in a gas turbine-steam turbine combined cycle mode. NG is fired in highly enriched oxygen (99.7%) and recycled CO2 from the flue gas. Liquid oxygen (LOX) is supplied by an on-site air separation unit (ASU). By cross-integrating the ASU with the CO2 capture unit, the energy consumption for CO2 capture is significantly reduced. The exergy of LOX is used to liquefy CO2 from the flue gas, thereby saving compression energy and also delivering product CO2 in a saleable form. By applying a new technique, the gas turbine efficiency is increased by about 2.9%. The net thermal efficiency (electricity out/heat input) is estimated at 45%, compared to a plant without CO2 capture of 54%. However, the relatively modest efficiency loss is amply compensated by producing saleable byproducts, and by the virtue that the plant is pollution free, including NOx, SO2 and particulate matter. In fact, the plant needs no smokestack. Besides electricity, the byproducts of the plant are condensed CO2, NO2 and Ar, and if operated in cogeneration mode, steam.  相似文献   

2.
Coal-fired power plants are one of the most important targets with respect to reduction of CO2 emissions. The reasons for this are that coal-fired power plants offer localized large point sources (LPS) of CO2 and that the Indian power sector contributes to roughly half of all-India CO2 emissions. CO2 capture and storage (CCS) can be implemented in these power plants for long-term decarbonisation of the Indian economy. In this paper, two artificial intelligence (AI) techniques—adaptive network based fuzzy inference system (ANFIS) and multi gene genetic programming (MGGP) are used to model Indian coal-fired power plants with CO2 capture. The data set of 75 power plants take the plant size, the capture type, the load and the CO2 emission as the input and the COE and annual CO2 emissions as the output. It is found that MGGP is more suited to these applications with an R2 value of more than 99% between the predicted and actual values, as against the ~96% correlation for the ANFIS approach. MGGP also gives the traditionally expected results in sensitivity analysis, which ANFIS fails to give. Several other parameters in the base plant and CO2 capture unit may be included in similar studies to give a more accurate result. This is because MGGP gives a better perspective toward qualitative data, such as capture type, as compared to ANFIS.  相似文献   

3.
In this paper, the influence of membrane separation of CO2 from flue gases and the impacts of the whole CCS process (CO2 separation and compression) on the performance of a coal-fired power plant are studied. First, the effects of the characteristics of the membrane (selectivity and permeability) and the parameters of the process (feed and permeate pressure) on two indices, CO2 recovery rate and CO2 purity are analysed. Next, a method for determining the minimum power loss and efficiency loss of the power plant as a function of these calculated indices is described. Then, the power requirements and efficiency loss (up to 15.4 percentage points) because of the CCS installation are calculated. A method for reducing these losses through the integration of the CCS installation with the power plant is also proposed. The main aims of the integration are heat exchange between media and a decrease in the CO2 temperature before compression. Implementing this process can result in a significant reduction of the efficiency loss by 8 percentage points.  相似文献   

4.
The first industrial-scale CO2 capture plant in China has been demonstrated at Huaneng Beijing power plant has shown that this technology is a good option for the capture of CO2 produced by commercial coal-fired power plants. The commissioning and industrial tests are introduced in this paper. The tests show that in the early stages of the passivation phase, the concentration variations of amine, anti-oxidant and Fe3+ are in the normal range, and the main parameters achieve the design value. The efficiency of the CO2 capture was about 80–85%, and by the end of January 2009 about 900 tons of CO2 (99.7%) have been captured. The equipment investment and consumptive costs, including steam, power, solution and others, have been analyzed. The results show: the cost of the absorber and the stripper account for about 50% of main equipment; the consumptive cost is about 25.3 US$ per metric tons of CO2, of which the steam requirement accounts for about 55%; the COE increased by 0.02 US$/kW h and the electricity purchase price increased by 29%.  相似文献   

5.
In order to further reduce the energy consumption of CO2 capture from the traditional SOFC hybrid power system, based on the principle of energy cascade utilization and system integration, a zero CO2 emission atmospheric pressure solid oxide fuel cell (SOFC) hybrid power system integrated with oxygen ion transport membrane (OTM) is proposed. The oxygen is produced by the OTM for the oxy‐fuel combustion afterburner of SOFC. With the Aspen‐plus software, the models of the overall SOFC hybrid power systems with or without CO2 capture are developed. The thermal performance of new system is investigated and compared with other systems. The effects of the fuel utilization factor of SOFC and the pressure ratio between two sides of OTM membrane on the overall system performance are analyzed and optimized. The research results show that the efficiency of the zero CO2 emission atmospheric pressure SOFC hybrid power system integrated with OTM is around 58.36%, only 2.48% lower than that of the system without CO2 capture (60.84%) but 0.96% higher than that of the zero CO2 emission atmospheric pressure SOFC hybrid system integrated with the cryogenic air separation unit. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Two novel system configurations were proposed for oxy-fuel natural gas turbine systems with integrated steam reforming and CO2 capture and separation. The steam reforming heat is obtained from the available turbine exhaust heat, and the produced syngas is used as fuel with oxygen as the oxidizer. Internal combustion is used, which allows a very high heat input temperature. Moreover, the turbine working fluid can expand down to a vacuum, producing an overall high-pressure ratio. Particular attention was focused on the integration of the turbine exhaust heat recovery with both reforming and steam generation processes, in ways that reduce the heat transfer-related exergy destruction. The systems were thermodynamically simulated, predicting a net energy efficiency of 50–52% (with consideration of the energy needed for oxygen separation), which is higher than the Graz cycle energy efficiency by more than 2 percentage points. The improvement is attributed primarily to a decrease of the exergy change in the combustion and steam generation processes that these novel systems offer. The systems can attain a nearly 100% CO2 capture.  相似文献   

7.
A new zero CO2 emission solid oxide fuel cell (SOFC) hybrid power system integrated with the oxygen ion transport membrane using CO2 as sweep gas is proposed in this paper. The pure oxygen is picked up from the cathode outlet gas by the oxygen ion transport membrane with CO2 as sweep gas; the oxy‐fuel combustion mode in the afterburner of SOFC is employed. Because the combustion product gas only consists of CO2 and steam, CO2 is easily captured with lower energy consumption by the condensation of steam. With the aspen plus soft, this paper builds the simulation model of the overall SOFC hybrids system with CO2 capture. The exergy loss distributions of the overall system are analyzed, and the effects of the key operation parameters on the overall system performance are also investigated. The research results show that the new system still has a high efficiency after CO2 recovery. The efficiency of the new system is around 65.03%, only 1.25 percentage points lower than that of the traditional SOFC hybrid power system(66.28%)without CO2 capture. The research achievements from this paper will provide the valuable reference for further study on zero CO2 emission SOFC hybrid power system with higher efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
To explore public awareness of carbon capture and storage (CCS), attitudes towards the use of CCS and the determinants of CCS acceptance in China, a study was conducted in July 2009 based on face-to-face interviews with participants across the country. The result showed that the awareness of CCS was low among the surveyed public in China, compared to other clean energy technologies. Respondents indicated a slightly supportive attitude towards the use of CCS as an alternative technology to CO2 emission reductions. The regression model revealed that in addition to CCS knowledge, respondents’ understanding of the characteristics of CCS, such as the maturity of the technology, risks, capability of CO2 emission reductions, and CCS policy were all significant factors in predicting the acceptance of CCS. The findings suggest that integrating public education and communication into CCS development policy would be an effective strategy to overcome the barrier of low public acceptance.  相似文献   

9.
CO2 capture and storage (CCS) is receiving considerable attention as a potential greenhouse gas (GHG) mitigation option for fossil fuel power plants. Cost and performance estimates for CCS are critical factors in energy and policy analysis. CCS cost studies necessarily employ a host of technical and economic assumptions that can dramatically affect results. Thus, particular studies often are of limited value to analysts, researchers, and industry personnel seeking results for alternative cases. In this paper, we use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and current costs of fossil fuel power plants with CCS on a systematic basis. This plant-level analysis explores a broader range of key assumptions than found in recent studies we reviewed for three major plant types: pulverized coal (PC) plants, natural gas combined cycle (NGCC) plants, and integrated gasification combined cycle (IGCC) systems using coal. In particular, we examine the effects of recent increases in capital costs and natural gas prices, as well as effects of differential plant utilization rates, IGCC financing and operating assumptions, variations in plant size, and differences in fuel quality, including bituminous, sub-bituminous and lignite coals. Our results show higher power plant and CCS costs than prior studies as a consequence of recent escalations in capital and operating costs. The broader range of cases also reveals differences not previously reported in the relative costs of PC, NGCC and IGCC plants with and without CCS. While CCS can significantly reduce power plant emissions of CO2 (typically by 85–90%), the impacts of CCS energy requirements on plant-level resource requirements and multi-media environmental emissions also are found to be significant, with increases of approximately 15–30% for current CCS systems. To characterize such impacts, an alternative definition of the “energy penalty” is proposed in lieu of the prevailing use of this term.  相似文献   

10.
This paper presents a summary of technical-economic studies. It allows evaluating, in the French context, the production cost of electricity derived from coal and gas power plants with the capture of CO2, and the cost per tonne of CO2 avoided. Three systems were studied: an Integrated Gasification Combined Cycle (IGCC), a conventional combustion of Pulverized Coal (PC) and a Natural Gas Combined Cycle (NGCC). Three main methods were envisaged for the capture of CO2: pre-combustion, post-combustion and oxy-combustion.For the IGCC, two gasification types have been studied: a current technology based on gasification of dry coal at 27 bars (Shell or GE/Texaco radiant type) integrated into a classical combined cycle providing 320 MWe, and a future technology (planned for about 2015–2020) based on gasification of a coal–water mixture (slurry) that can be compressed to 64 bars (GE/Texaco slurry type) integrated into an advanced combined cycle (type H with steam cooling of the combustion turbine blades) producing a gross power output of 1200 MWe.  相似文献   

11.
The power sectors of many big economies still rely on coal-fired plants and emit huge amounts of carbon dioxide. Emerging countries like Brazil, China and South Africa plan to expand the use of coal-fired thermal plants in the next decade. Integrated gasification combined cycle (IGCC) is an innovative technology that facilitates the implementation of carbon capture (CC). The present work analyzes the maturity and costs of the IGCC technology, with and without CC, and assesses the effect of the technology risk on its economic viability. Findings show that the inclusion of the risk in the economic analysis of IGCC plants raises the cost of CO2 avoided from 36 US$/tCO2 to 106 US$/tCO2 in the case of Shell Gasifiers and from 39 US$/tCO2 to 112 US$/tCO2 in the case of GE Gasifiers. Thus, the introduction of IGCC with CC on a wider scale faces huge uncertainties. The feasibility of these plants will rely heavily on the overcoming of the technology risk. Besides, its implementation in the short run will depend on government incentives to bear with the additional cost incurred in the first-generation plants.  相似文献   

12.
Activated carbon is a promising material that has a broad application prospect. In this work, biomass (tea seed shell) was used to prepare activated carbon with KOH activation (referred to as AC), and nitrogen was doped in activated carbon using melamine as the nitrogen source (referred to as NAC-x, where x is the mass ratio of melamine and activated carbon). The obtained activated biomass carbon (activated bio-carbon) samples were characterized by Brunauer–Emmett–Teller (BET)-specific surface area analysis, ultimate analysis, X-ray photoelectron spectroscopy (XPS) analysis, Raman spectrum analysis, and X-ray diffraction (XRD) patterns. The specific surface areas of activated bio-carbons were 1503.20 m2/g (AC), 1064.54 m2/g (NAC-1), 1187.93 m2/g (NAC-2), 1055.32 m2/g (NAC-3), and 706.22 m2/g (NAC-4), revealing that nitrogen-doping process leads to decrease in specific surface area. XPS analysis revealed that the main nitrogen-containing functional groups were pyrrolic-N and pyridinic-N. The capacity of CO2 capture and electrochemical performance of activated bio-carbon samples were investigated. The CO2 capturing capacity followed this order: AC (3.15 mmol/g) > NAC-2 (2.75 mmol/g) > NAC-1 (2.69 mmol/g) > NAC-3 (2.44 mmol/g) > NAC-4 (1.95 mmol/g) at 298 K at 1 bar, which is consistent with the order of specific surface area. The specific surface area played a dominant role in CO2 capturing capacity. As for supercapacitor, AC-4 showed the highest specific capacitance (168 F/g) at the current density of 0.5 A/g, but NAC-2 showed the best electrochemical performance (89 F/g) at 2 A/g. Nitrogen-containing functional groups and specific surface area both had an important impact on electrochemical performance. In general, NAC-3 and NAC-2 produced excellent electrochemical performance. Compared with NAC-3, less melamine was used to prepare NAC-2; therefore, NAC-2 was considered as the best activated bio-carbon for supercapacitor for 141 F/g (at 0.5 A/g), 108 F/g (at 1 A/g), and 89 F/g (at 2 A/g) in this work.  相似文献   

13.
Biomass based carbon has captured more and more attention because it is environmentally friendly and has properties of low cost and ideal sustainability. In this study, three kinds of activated biomass carbons (ie, ABC-700, ABC-800 and ABC-900) were first carbonized through pine sawdust pyrolysis and then activated using KOH under three different activation temperatures (ie, 700°C, 800°C and 900°C). The structure properties of the prepared activated biomass carbons were characterized by N2-adsorption/desorption, SEM, TEM, XRD, Raman, XPS, TG and ultimate analysis. To clarify the activation mechanism, the gas products produced during KOH activation process were measured online with an ETG gas analyzer. The performance of the activated biomass carbons derived from pine sawdust for supercapacitor and CO2 capture was then evaluated. The predominant gas products during the activation process are H2 and CO. It indicates that the porous structure was created by using an enhanced etching reaction between carbon atoms and KOH. An increment of the activation temperature from 700 to 900°C results in the increase of surface area (from 1728.66 to 2330.89 m2/g) and total pore volume (from 0.671 to 1.914 cm3/g). Among the three samples, ABC-900 exhibits the maximal specific capacitance of 175.6 F·g−1 and high energy density of 24.39 Wh·kg−1 at the 0.5 A·g−1. And the ABC-700 shows the maximal CO2 capture capacity of 4.21 mmol/g and high selectivity of CO2 over N2 at 298 K and 1 bar. In addition, ABC-700 also has excellent stability and reproducibility after 15 times adsorption-desorption cycles. The unexceptionable electrochemical performance and adsorption capacity of the biomass-carbons show its broad application prospects in the field of supercapacitors and CO2 capture.  相似文献   

14.
We assess the option to install a carbon capture and storage (CCS) unit in a coal-fired power plant operating in a carbon-constrained environment. We consider two sources of risk, namely the price of emission allowance and the price of the electricity output. First we analyse the performance of the EU market for CO2 emission allowances. Specifically, we focus on the contracts maturing in the Kyoto Protocol's first commitment period (2008 to 2012) and calibrate the underlying parameters of the allowance price process. Then we refer to the Spanish wholesale electricity market and calibrate the parameters of the electricity price process.We use a two-dimensional binomial lattice to derive the optimal investment rule. In particular, we obtain the trigger allowance prices above which it is optimal to install the capture unit immediately. We further analyse the effect of changes in several variables on these critical prices, among them allowance price volatility and a hypothetical government subsidy.We conclude that, at current permit prices, immediate installation does not seem justified from a financial point of view. This need not be the case, though, if carbon market parameters change dramatically, carbon capture technology undergoes significant improvements, and/or a specific governmental policy to promote these units is adopted.  相似文献   

15.
Technological innovations in CO2 capture and storage technologies are being pursued worldwide under a variety of private and government-sponsored R&D programs. While much of this R&D is directed at novel concepts and potential breakthrough technologies, there are also substantial efforts to improve CO2 capture technologies already in use. In this paper, we focus on amine-based CO2 capture systems for power plants and other combustion-based applications. The current performance and cost of such systems have been documented in several recent studies. In this paper we examine the potential for future cost reductions that may result from continued process development. We used the formal methods of expert elicitation to understand what experts in this field believe about possible improvements in some of the key underlying parameters that govern the performance and cost of this technology. A dozen leading experts from North America, Europe and Asia participated in this study, providing their probabilistic judgments via a detailed questionnaire coupled with individual interviews. Judgments about detailed technical parameters were then used in an integrated power plant modeling framework (IECM-CS) developed for USDOE to evaluate the performance and costs of alternative carbon capture and sequestration technologies for fossil-fueled power plants. The experts’ responses have allowed us to build a picture of how the overall performance and cost of amine-based systems might improve over the next decade or two. Results show how much the cost of CO2 capture could be reduced via targeted R&D in key areas.  相似文献   

16.
Coal use for electricity generation will continue growing in importance. In the present work the optimization of a high efficiency and zero emissions coal-fired plant, which produces both hydrogen and electricity, has been developed. The majority of this paper concerns an integration of gasification unit, which is characterized by coal hydrogasification and carbon dioxide (CO2) separation, with a power island, where a high-hydrogen content syngas is burnt with pure oxygen stream. Another issue is the high temperature CO2 desorption. Because of the elevated temperature heat supply, the regeneration process affects the overall performance of ZECOMIX plant. An advanced steam cycle characterized by a medium pressure steam compressor and expander has been considered for power generation. A preliminary study of different components leads to analyze possible routes for optimization of the whole plant. The plant equipped with a CO2 capture unit could reach efficiency close to 50%. The simulations of a thermodynamic model were carried out using the software ChemCAD.

This study is a part of a larger research project, named ZECOMIX, led by ENEA (Italian Research Agency for New technologies, Energy and Environment), other partners being ANSALDO and different Italian Universities. It is aimed at analyzing an integrated hydrogen and power production plant.  相似文献   


17.
This study considers the optimization of operations for an integrated fossil-renewable energy system with CO2 capture. The system treated consists of a coal-fired power station, a temperature-swing absorption CO2 capture facility powered by a natural gas combustion turbine, and wind generation. System components are represented in a modular fashion using energy and mass balances. Optimization is applied to determine hourly system dispatch to maximize operating profit given energy prices and wind generation data. A CO2 emission constraint, modeled after a California law, is enforced. Idealized and realistic scenarios are considered, along with several different system specifications. For a year of operation, simulated using available wind and energy price data, operating profit for optimized operation is shown to be approximately 20% greater than profit using a heuristic procedure. The benefit from optimization is positively correlated with electricity price variability and mean wind generation. The impact of different component specifications and different CO2 absorption solvents on the optimal operation of the energy system is also assessed. In total, this study demonstrates that the effective operating cost of an integrated energy system operating under a CO2 emission constraint can be substantially reduced via optimal flexible operation.  相似文献   

18.
A thermodynamic analysis of a 500‐MWe subcritical power plant using high‐ash Indian coal (base plant) is carried out to determine the effects of carbon dioxide (CO2) capture on plant energy and exergy efficiencies. An imported (South African) low‐ash coal is also considered to compare the performance of the integrated plant (base plant with CO2 capture plant). Chemical absorption technique using monoethanolamine as an absorbent is adopted in the CO2 capture plant. The flow sheet computer program “Aspen Plus” is used for the parametric study of the CO2 capture plant to determine the minimum energy requirement for absorbent regeneration at optimum absorber–stripper configuration. Energy and exergy analysis for the integrated plant is carried out using the power plant simulation software “Cycle‐Tempo”. The study also involves determining the effects of various steam extraction techniques from the turbine cycle (intermediate‐pressure–low‐pressure crossover pipe) for monoethanolamine regeneration. It is found that the minimum reboiler heat duty is 373 MWth (equivalent to 3.77 MJ of heat energy per kg of CO2 captured), resulting in a drop of plant energy efficiency by approximately 8.3% to 11.2% points. The study reveals that the maximum energy and exergy losses occur in the reboiler and the combustor, respectively, accounting for 29% and 33% of the fuel energy and exergy. Among the various options for preprocessing steam that is extracted from turbine cycle for reboiler use, “addition of new auxiliary turbine” is found to be the best option. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, we estimate and analyze the CO2 mitigation costs of large-scale biomass-fired cogeneration technologies with CO2 capture and storage. The CO2 mitigation cost indicates the minimum economic incentive required (e.g. in the form of a carbon tax) to make the cost of a less carbon intensive system equal to the cost of a reference system. If carbon (as CO2) is captured from biomass-fired energy systems, the systems could in principle be negative CO2 emitting energy systems. CO2 capture and storage from energy systems however, leads to reduced energy efficiency, higher investment costs, and increased costs of end products compared with energy systems in which CO2 is vented. Here, we have analyzed biomass-fired cogeneration plants based on steam turbine technology (CHP-BST) and integrated gasification combined cycle technology (CHP-BIGCC). Three different scales were considered to analyze the scale effects. Logging residues was assumed as biomass feedstock. Two methods were used to estimate and compare the CO2 mitigation cost. In the first method, the cogenerated power was credited based on avoided power production in stand-alone plants and in the second method the same reference output was produced from all systems. Biomass-fired CHP-BIGCC with CO2 capture and storage was found very energy and emission efficient and cost competitive compared with other conversion systems.  相似文献   

20.
Promising electricity and hydrogen production chains with CO2 capture, transport and storage (CCS) and energy carrier transmission, distribution and end-use are analysed to assess (avoided) CO2 emissions, energy production costs and CO2 mitigation costs. For electricity chains, the performance is dominated by the impact of CO2 capture, increasing electricity production costs with 10–40% up to 4.5–6.5 €ct/kWh. CO2 transport and storage in depleted gas fields or aquifers typically add another 0.1–1 €ct/kWh for transport distances between 0 and 200 km. The impact of CCS on hydrogen costs is small. Production and supply costs range from circa 8 €/GJ for the minimal infrastructure variant in which hydrogen is delivered to CHP units, up to 20 €/GJ for supply to households. Hydrogen costs for the transport sector are between 14 and 16 €/GJ for advanced large-scale coal gasification units and reformers, and over 20 €/GJ for decentralised membrane reformers. Although the CO2 price required to induce CCS in hydrogen production is low in comparison to most electricity production options, electricity production with CCS generally deserves preference as CO2 mitigation option. Replacing natural gas or gasoline for hydrogen produced with CCS results in mitigation costs over 100 €/t CO2, whereas CO2 in the power sector could be reduced for costs below 60 €/t CO2 avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号