首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel α+β titanium alloy with multi-alloying addition was designed based on the cluster formula 12[Al-Ti12](AlTi2)+5[Al-Ti14](AlV1.2Mo0.6Nb0.2) which was derived from Ti-6Al-4V.The nominal composition of this novel alloy was determined as Ti-6.83Al-2.28V-2.14Mo-0.69Nb-6.79Zr.In this study,the novel alloy and Ti-6Al-4V alloy samples were prepared by laser additive manufacturing.The microstructure,micro-hardness,room/high temperature tensile properties of the as-deposited samples were investigated.Compared to Ti-6Al-4V,the novel alloy has much higher room and high temperature (600℃) tensile strengths,which are 1,427.5 MPa and 642.2 MPa,respectively;however,it has a much lower elongation (3.2%) at room temperature because of the finer microstructure.To improve the elongation of the novel alloy,heat treatment was used.After solution at 960℃ or 970℃ for 1 h followed by air cooling and aging at 550℃ for 4 h followed by air cooling,a unique bi-modal microstructure which contains crab-like primary α and residual β phase is obtained,improving the compression elongation by 80.9% compared to the as-deposited samples.The novel alloy can be used as a high-temperature and high-strength candidate for laser additive manufacturing.  相似文献   

2.
INFLUENCEOFALLOYINGELEMENTS(Nb,Mo,V)ONMICROSTRUCTUREOFTi_3AlBASEALLOYS¥SONGDan;DINGJinjun;WANGYandong(AnalysisandTestingCente?..  相似文献   

3.
热处理对激光立体成形TC11钛合金组织的影响   总被引:2,自引:0,他引:2  
通过对TC11钛合金激光立体成形件沉积态和热处理态组织进行对比研究,探索改善TC11钛合金激光立体成形组织,提高材料高温综合性能的途径.结果表明,TC11钛合金的沉积态组织由贯穿多个熔覆层粗大柱状晶和粗大等轴晶组成,原始柱状β-Ti晶内的微观组织是由条状α和残留β组成.沉积态试样在950 ℃热处理后组织为等轴α、条状α和β转变基体组成的近似三态组织,晶界α大部分破碎球化消失,部分未破碎的晶界上镶嵌有α集束.粗大β晶内等轴α的产生与亚晶有关.在970 ℃热处理后为网篮组织,等轴α较少,α板条有粗化趋势;在1030 ℃再结晶后再经950 ℃热处理的组织是由粗大α板条组成的魏氏组织,在α边界和α内部残留有大量细小β,晶界α基本没有破碎消失.  相似文献   

4.
Experimental studies using differential scanning calorimetry (DSC) for nitriding of four titanium-alloys near α Ti-8Al-1Mo-1V, near α Ti-6Al-2Sn-4Zr-2Mo, α + β Ti-6Al-4V and near β Ti-10V-2Fe-3Al at different temperatures and for different periods of time are presented. The X-ray diffraction (XRD) technique was used in order to study the phase transformations that occur during gas nitriding. As a result of the nitrogen interaction, a nitrided layer was formed that consists of titanium nitrides, followed by an interstitial solution of nitrogen in the hcp α titanium phase. The microstructural changes of these alloys in relation to the alloy composition and processing parameters were studied. It was found that the microstructure of alloys nitrided at temperatures below their β transus temperatures for various periods of time is uniform and homogeneous. With the increase of the temperature above their β transus temperatures the microstructure changes to irregular. Microindentation hardness testing using a Knoop indenter was conducted on the nitrided titanium alloys to analyse their hardness evolution in relation to the nitriding processing parameters and alloy composition. It was found that the microhardness increases with the increase of the temperature and time of nitriding. The surface morphology of the Ti-6Al-2Sn-4Zr-2Mo alloy in relation to the nitriding processing parameters was analysed.  相似文献   

5.
The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated. The influences of the temperature and time of solution treatment and aging treatment were analyzed. The results show that the microstructure of LSFed samples consists of Widmanstätten α laths and a little acicular in columnar prior β grains with an average grain width of 300 µm, which grow epitaxially from the substrate along the deposition direction (Z). Solution treatment had an important effect on the width, aspect ratio, and volume fraction of primary and secondary α laths, and aging treatment mainly affects the aspect ratio and volume fraction of primary α laths and the width and volume fraction of secondary α laths. Globular α phase was first observed in LSFed samples when the samples were heat treated with solution treatment (950°C, 8 h/air cooling (AC)) or with solution treatment (950°C, 1 h/AC) and aging treatment (550°C, above 8 h/AC), respectively. The coarsening and globularization mechanisms of α phase in LSFed Ti-6Al-4V alloy during heat treatment were presented. To obtain good integrated mechanical properties for LSFed Ti-6Al-4V alloys, an optimized heat treatment regimen was suggested.  相似文献   

6.
粉末冶金Ti-Al-Mo-V-Ag合金的显微组织与力学性能   总被引:1,自引:0,他引:1  
通过粉末冶金元素混合法,制备含α及β相的Ti-Al-Mo-V-Ag合金。通过X射线衍射、金相观察、扫描电镜观察及力学性能测试,研究Ag的添加及烧结温度对Ti-5Al-4Mo-4V合金的组织与性能影响。结果表明:Ag的添加能提高粉末冶金Ti-5Al-4Mo-4V合金的的相对密度,改善合金的力学性能;在1250℃下烧结4h后,Ti-5Al-4Mo-4V-5Ag合金的相对密度及抗压缩强度分别达到96.3%和1656MPa。  相似文献   

7.
The effect of heat treatments on laser additive manufacturing (LAM) Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy (TC17) was studied aiming to optimize its microstructure and mechanical properties. The as-deposited sample exhibits features of a mixed prior β grain structure consisting of equiaxed and columnar grains, intragranular ultra-fine α laths and numerous continuous grain boundary α (αGB). After being pre-annealed in α+β region (840 °C) and standard solution and aging treated, the continuous αGB becomes coarser and the precipitate free zone (PFZ) nearby the αGB transforms into a zone filled with ultra-fine secondary α (αS) but no primary α (αP). When pre-annealed in single β region (910 °C), all α phases transform into β phase and the alloying elements distribute uniformly near the grain boundary. Discontinuous αGB and uniform mixture of αP and αS near grain boundary form after subsequent solution and aging treatment. The two heat treatments can improve the tensile mechanical properties of LAM TC17 to satisfy the aviation standard for TC17.  相似文献   

8.
Coarse columnar β grains result in anisotropic mechanical properties in Ti alloys deposited by additive manufacturing. This study reports that Ti-6Al-4V alloy fabricated by coaxial electron beam wire feeding additive manufacturing presents a weak anisotropy, high strength and ductility. The superior tensile property arises from a microstructure with fine equiaxed β grains (EGβ), discontinuous grain boundary α phase and short intragranular α lamellae. A large region of fine EGβ arises from a special combination of the temperature gradient and solidification rate, and attractive α morphology is caused by solid phase transformations during interpass thermal cycling and post heat treatments.  相似文献   

9.
研究了试件尺寸和工艺参数(电子束强度,扫描速度,焦点偏移量和扫描长度)对电子束熔融(EBM)加工Ti-6Al-4V合金微观结构的影响。结果表明,可以观察到EBM加工的Ti-6Al-4V合金的微观结构由原始β相的柱状晶粒组成。在柱状晶粒内部观察到典型的(α+β)结构,即魏氏体α片和在细小的α晶粒的界面上形成的杆状β相。还发现沿原始β柱状晶粒的晶界形成的α层晶界。随着试件厚度、电子束能量密度和扫描长度的增加,先前的β柱状晶粒的直径增大,并且生长的方向与加工方向一致。同时,柱状晶粒直径随着试件高度的增加而减小。随着试件厚度和电子束能量密度的增加,α片会变得更粗大。  相似文献   

10.
In the current study, phase stability of Ti-Al-Mo-Nb alloys was investigated, and the effect of B addition was examined for cast alloys. The fabricated cast alloys were mainly composed of α2 / γ lamellar with a β phase, when they were heat treated at 1100 °C followed by air cooling, the alloy was composed of α2 / γ lamellar with γ+β necklace phase at the colony boundary for the Ti-45Al-3Mo-2Nb-1B alloy, and the colony size was refined to ~ 20 μm. In order to identify the effect of the microstructures on mechanical strength, compressive tests were performed on the fabricated alloys of Ti-45Al-3Mo-2Nb and Ti-45Al-3Mo-2Nb-1B at room temperature and at 800 °C. The microstructural variations and phase stability were discussed in terms of pseudo-binary phase diagram calculated by Pandat software?.  相似文献   

11.
采用Ti-6Al-4V(TC4)焊丝对2 mm厚的Ti-3Al-6Mo-2Fe-2Zr钛合金进行激光填丝焊接,利用光学显微镜、扫描电子显微镜、X射线能谱仪等分析测试方法研究了送丝速度对接头显微组织和力学性能的影响. 结果表明,由于从熔合线至母材受到焊接热作用逐渐递减,热影响区组织依次为单一β相、基体β相 + 初生αp相、基体β相 + 初生αp相 + 少量次生αs相. 焊缝中有针状α'相生成,且分布不均匀. 随着送丝速度的增加,针状α'相的数量增加,尺寸增大. 激光填丝焊接头的抗拉强度及断后伸长率均低于母材,随送丝速度的增加,接头抗拉强度上升,断后伸长率下降.其原因在于TC4焊丝的加入,促使针状α'相在焊缝中析出,送丝速度加快,造成焊缝中钼当量[Mo]eq降低,析出的针状α'相数量进一步增多,尺寸增大. 针状α'相的析出提高了焊缝强度,当送丝速度大于1.0 m/min时,接头的断裂位置为热影响区.  相似文献   

12.
The use of β titanium alloys in the aerospace industry   总被引:2,自引:0,他引:2  
Beta titanium alloys have been available since the 1950s (Ti-13V-11Cr-3Mo or B120VCA), but significant applications of these alloys, beyond the SR-71 Blackbird, have been slow in coming. The next significant usage of a β alloy did not occur until the mid-1980s on the B-1B bomber. This aircraft used Ti-15V-3Cr-3Al-3Sn sheet due to its capability for strip rolling, improved formability, and higher strength than Ti-6Al-4V. The next major usage was on a commercial aircraft, the Boeing 777, which made extensive use of Ti-10V-2Fe-3Al high-strength forgings. Ti-15V-3Cr-3Al-3Sn environmental control system ducting, castings, and springs were also used, along with Ti-3Al-8V-6Cr-4Mo-4Zr (β-C) springs. Beta-21S was also introduced for high-temperature usage. More recent work at Boeing has focused on the development of Ti-5Al-5Mo-5V-3Cr, a high-strength alloy that can be used at higher strength than Ti-10V-2Fe-3Al and is much more robust; it has a much wider, or friendlier, processing window. This, along with additional studies at Boeing, and from within the aerospace industry in general will be discussed in detail, summarizing applications and the rationale for the selection of this alloy system for aerospace applications. This paper was presented at the Beta Titanium Alloys of the 00’s Symposium sponsored by the Titanium Committee of TMS, held during the 2005 TMS Annual Meeting & Exhibition, February 13–16, 2005 in San Francisco, CA.  相似文献   

13.
In this study, the sintering properties of Ti-6Al-4V-xMo powder prepared by an addition of Mo to Ti-6Al-4V scraps and subsequent pulverization were investigated. As the content of Mo added to Ti-6Al-4V scraps as a β stabilizer increased, the weight ratio of the α and β stabilizers in the Ti-6Al-4V-xMo changed and the original weight ratio of 6:4 varied to 5.71:8.57 when 5 wt% xMo was added. In order to compare the difference in properties of Ti-6Al-4V-xMo ingots with sintered bodies of the Ti-6Al-4V-xMo powder, we prepared sintered bodies from Ti-6Al-4V-xMo powder with an O content of about 5000 ppm and 325 mesh size. As a result, it was found that the sintered bodies of Ti-6Al-4V-xMo powder showed different properties of density and micro hardness compared to the Ti-6Al-4V-xMo ingots. These differences can be explained by the larger specific surface area of the sintered bodies, which formed a porous oxide layer on the surface due to the increase of Mo in the β zone of the Ti-6Al-4V alloys.  相似文献   

14.
Y.S. Ding  C. Chen 《Corrosion Science》2009,51(6):1413-1419
The fatigue crack growth rates (FCGRs) of Ti-6Al-4V and Ti-4.5Al-3V-2Mo-2Fe alloys were determined in gaseous hydrogen, air, and a soft vacuum. In hydrogen and at a stress ratio of 0.1, the deflected crack path associated with the localized brittle fracture of the α-phase could account for the reduced FCGR of Ti-6Al-4V. At a higher stress ratio of 0.5, hydrogen embrittlement enhanced cracking and alleviated the effect of crack deflections in Ti-6Al-4V specimens, resulting in the FCGR in hydrogen similar to that in air. In contrast, the FCGR of Ti-4.5Al-3V-2Mo-2Fe was insensitive to both the environment and stress ratio.  相似文献   

15.
Ti-45Al-9(V, Nb, Y) alloys with four different x=V/Nb (atomic ratio x = 1, 1.5, 2 and 3.5) have been prepared, and the microstructures, properties and hot deformation behaviors were investigated. SEM, XRD and TEM results showed that Ti-45Al-9(V, Nb, Y) alloys were mainly composed of γ, α 2 , and β phase, and the volume fraction of β phase increased with the increase of the atomic ratio of V/Nb. The alloys were featured with lamellar microstructure with β and γ phases locating at the colony boundaries, and some β precipitates appearing at γ/γ interfaces. It was found that the colony size decreased with the increase of x. The alloys exhibited moderate mechanical properties at room temperature, with a yield strength of over 600 MPa, and fractures showed mainly translamellar character. The alloy with x=3.5 exhibited the best deformability at elevated temperature and that with x=1 had superior oxidation resistance at 800 ℃.  相似文献   

16.
B元素对Ti-46Al和Ti-46Al-5Nb合金柱状晶组织的影响   总被引:2,自引:0,他引:2  
B元素对Ti-46Al和Ti-46A1-5Nb(原子分数,%)合金的柱状晶组织均有明显的细化作用,且对后者的细化效果更显著.这一现象可归结为:B元素在Ti-46Al-5Nb合金中的溶解度较低,硼化物析出量增加,柱状晶组织进一步细化.  相似文献   

17.
Comparative studies of the structure and properties of alloys Ti-2.2% Al-5% Fe and Ti-2.2% Al-2.2% V-2.2% Mo-2.5% Fe in annealed, quenched, and aged conditions are performed. The strength level of the alloys corresponds to that of VT16. The possibility of replacing alloy VT16 by alloy Ti-2.2% Al-2.2% V-2.2% Mo-2.5% Fe is estimated. __________ Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 10–13, June, 2006.  相似文献   

18.
使用直接能量沉积技术,以纯Ti、纯V和纯Cr粉末为原料制备一系列Ti-YV-15Cr(X=20,25,30,35)合金.研究了V含量对Ti-XV-15Cr合金的晶粒形貌、显微硬度、弹性模量及阻燃性能的影响.结果表明,Ti-20V-15Cr、Ti-25V-15Cr和Ti-30V-15Cr合金的显微组织由外延生长的柱状晶和...  相似文献   

19.
选取5种油气开发常用钛合金材料(Ti-6Al-4V、Ti-6Al-4V-0.1Ru、Ti-6Al-2Sn-4Zr-6Mo、Ti-3Al-8V-6Cr-4Zr-4Mo和Ti-5.5Al-4.5V-2Zr-1Mo)为研究对象,使用高温高压釜模拟国内典型严酷服役工况环境,研究了不同钛合金材料耐均匀腐蚀、局部腐蚀、点蚀、应力腐蚀开裂(SCC)及缝隙腐蚀的性能,通过使用扫描电镜和能谱分析等手段对腐蚀形貌和腐蚀产物进行了分析,并使用电化学方法对不同合金的耐腐蚀机理进行了研究。结果显示,在所测试工况条件下,所有钛合金材料腐蚀反应均为阳极控制过程,均匀腐蚀速率均低于0.001mm/a,并且对应力腐蚀开裂均有良好的抗力。Ti-6Al-4V和Ti-5.5Al-4.5V-2Zr-1Mo合金出现明显的点蚀和缝隙腐蚀问题。对腐蚀机理研究表明,在工况条件温度下,随着pH值的降低,所有钛合金均发生自腐蚀电位降低,极化电阻减小,腐蚀电流增大,耐腐蚀性能下降,其中Ti-6Al-4V耐腐蚀性能下降的最为明显,研究结果为油气开发工况下钛合金石油管的选材和缝隙腐蚀问题防治提供理论基础。  相似文献   

20.
研究了Ti-5Al-4Zr-10Mo-3Cr合金经过β相区固溶(880 ℃)、不同温度时效(540~620 ℃)处理后次生α相(αs)析出形貌及其对力学性能的影响。结果表明:随着时效温度由540 ℃升高至620 ℃,合金中析出αs相片层厚度由0.030 μm增加到0.142 μm,屈服强度由1353 MPa降低至1074 MPa,断后伸长率由2.5%升高至11.4%,即时效析出的微米级片层αs能够显著调控合金的力学性能。此外,时效温度升高使合金的拉伸断裂由沿晶脆性断裂为主转变为韧窝穿晶为主的韧性断裂方式。Ti-5Al-4Zr-10Mo-3Cr合金时效析出的片层状αs相的厚度大于0.1 μm,合金的断后伸长率≥6%。当时效温度为600 ℃时,合金的硬度为387 HV10,抗拉强度为1182 MPa,伸长率为8.5%,具有良好的强塑性匹配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号