首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本论文采用PPE树脂与红磷母粒复配对PA6进行阻燃改性。结果表明,PPE的加入可以降低PA6达到目标阻燃等级红磷母粒的添加量,提高无卤阻燃PA6的冲击强度。另外,PPE的加入能明显提高无卤阻燃PA6的热变形温度。  相似文献   

2.
采用赤磷阻燃母料(RPM440H)作为无卤阻燃剂,对再生尼龙(PA66、PA6)进行了阻燃改性。采用双螺杆挤出加工工艺,通过添加不同组分阻燃剂制得了耐漏电阻燃增强尼龙复合材料;比较了再生尼龙品种、阻燃剂(RPM440H)用量、协同阻燃剂及玻璃纤维对材料的改性效果;确定了最佳工艺参数和配方。结果表明,赤磷阻燃母料(RPM440H)对各品种再生尼龙(PA66、PA6)的阻燃效果均较理想;采用本工艺制得的阻燃增强尼龙复合材料的电性能、阻燃性能、机械性能优异,完全能满足耐漏电低压电子、电器件的要求,已成功应用在正泰、德力西、人民电器等低压漏电保护器中。  相似文献   

3.
以尼龙6(PA6)为基体材料,以多聚磷酸蜜胺(MPP)/双磷酸哌嗪为复合阻燃剂制备无卤阻燃PA6复合材料。采用扫描电镜观察了无卤阻燃PA6复合材料燃烧物表面的炭层形貌,分析了阻燃剂在PA6中的阻燃机理,研究了MPP用量对无卤阻燃PA6复合材料阻燃性能和流变行为的影响。结果表明:MPP质量分数为10%时,无卤阻燃PA6复合材料的极限氧指数达到33.8%,燃烧热为24.96 k J/g,燃烧后残留物质量保留率为18%。流变研究表明,随着MPP用量增大,无卤阻燃PA6复合材料的表观黏度降低。随着MPP用量增大,促进了燃烧炭层生成,产生了良好的阻燃协同作用。  相似文献   

4.
综述了近年来国内外在苯乙烯类聚合物无卤阻燃方面的研究现状,详细地介绍了包括磷系、氮系、硅系、金属氢氧化物以及化学改性阻燃在内的无卤阻燃体系。分析了各种阻燃体系的优缺点及阻燃机理,并展望了阻燃聚苯乙烯的发展方向。  相似文献   

5.
无卤生态型阻燃高分子材料   总被引:10,自引:1,他引:9  
综述近几年各国研制成功的一些无卤阻燃高分子材料 ,包括无卤生态型阻燃PC、PC/ABS及改性PPO ,无卤阻燃PA及无卤阻燃涂料。这些无卤阻燃材料大多适用于电子 电气行业  相似文献   

6.
氢氧化镁与磷酸酯齐聚物协同阻燃聚酰胺6   总被引:2,自引:0,他引:2  
研究了氢氧化镁(MH)与间苯二酚双(二苯基)磷酸酯(RDP)复配阻燃改性聚酰胺(PA)6,当m(PA6)/m(MH)/m(RDP)为45:50:5时,复合体系通过了垂直燃烧UL94V-0级,极限氧指数为47.0%,拉伸屈服应力、缺口冲击强度和弯曲模量分别为纯PA6的110%、85%和138%。用热重分析仪、动态力学分析仪和扫描电子显微镜对MH和RDP协同改性PA6的机理进行了探讨,发现RDP的加入使PA6/MH作用力加强,热稳定性提高,燃烧炭层更为致密。  相似文献   

7.
无卤阻燃聚酰胺6/有机粘土(PA6/OMT)纳米复合材料用氢氧化镁(MH)和红磷(RP)作为阻燃剂、有机粘土(OMT)作为增效剂,通过熔融共混技术制备。形态学用XRD和TME表征。有机粘土对阻燃PA6机械性能和可燃性的影响进行了试验。结果表明,纳米复合材料的机械和阻燃性能比阻燃PA6高,OMT、MH和RP之间具有增效效应。  相似文献   

8.
李凤娇  周阳  黄启谷  杨万泰 《塑料》2014,(4):72-74,78
介绍了聚酰胺(PA)的制备方法,重点阐明了PA6和PA66的制备工艺;详述了PA阻燃改性和纳米复合材料改性方法和应用,无卤阻燃是阻燃材料发展的重点,纳米复合材料可以通过第二或第三组分的加入改善复合材料的热机械性能、韧性、热导率、电导率、抗菌性等性能。未来PA材料将朝着高性能化、功能化、复合化、工程化、结构化的方向发展。  相似文献   

9.
采用高流动性尼龙(PA)6为原料,制备了一系列玻璃纤维(GF)增强无卤阻燃PA6材料。考察了材料配方和挤出工艺对改性材料阻燃性能、力学性能、热性能及熔体流动速率(MFR)的影响,并对其原因进行了分析。结果表明,与普通PA6相比,高流动性PA6由于熔体黏度低、MFR高,有利于无卤阻燃剂和GF在基体材料内的混合和分散,因此在同样配方和工艺条件下,显示出更好的阻燃效果与更优的力学性能。  相似文献   

10.
以硫酸镁与氨水为原料,采用硬脂酸/硬脂酸钙作为复合改性剂,合成改性氢氧化镁阻燃剂。将制备的改性氢氧化镁与三聚氰胺氰尿酸盐(MCA)添加到尼龙(PA6)中,通过挤出造粒制备复合阻燃(PA6)。分别研究不同阻燃剂配比对复合材料力学性能、耐热性能、阻燃性能及机理的影响。结果表明:随着MCA/改性氢氧化镁比例的增大,复合阻燃PA6的拉伸性能与冲击性能均先上升后下降,当两者比例为1:1时,力学性能达到最优。同时,两阻燃剂协同作用,使尼龙6阻燃机理由解聚分解转化为直接炭化分解,有效抑制燃烧流滴现象,提高了复合材料的综合阻燃性能。  相似文献   

11.
简单分析了PA6的阻燃途径,详细综述了近年来填充型阻燃剂在PA6中的应用,包括含卤阻燃剂、无卤阻燃剂及有机高分子阻燃剂等,讨论了各自的阻燃机理,最后预测了应用于PA6的阻燃剂未来发展趋势。  相似文献   

12.
综述了热塑性聚氨酯弹性体(TPU)无卤阻燃研究现状,介绍了磷系、氮系、硅系、纳米无机、膨胀型阻燃剂对TPU的阻燃作用机理和阻燃效果,并对TPU的阻燃改性的未来发展趋势进行了展望。  相似文献   

13.
新型无卤阻燃工程塑料   总被引:5,自引:0,他引:5  
介绍了硅系阻燃PC、PA6/LS(层状硅酸盐 )纳米复合材料和膨胀型无卤阻燃材料的组成、特点及应用领域。  相似文献   

14.
以高聚合度聚磷酸铵(APP)为酸源,聚酰胺6(PA6)和改性PA6(MPA6)为炭源,4A分子筛为协效剂,对ABS进行无卤阻燃研究,考察了各试样的氧指数、热失重行为和炭层形貌,同时选用MPA6和乙烯-丙烯酸乙酯-甲基丙烯酸缩水甘油酯三嵌段共聚物(E-MA-GMA)弹性体对阻燃材料进行增韧改性。结果表明:APP/成炭剂PA6及其协效剂4A分子筛组成的无卤阻燃体系能显著改善了ABS树脂的阻燃性能,氧指数达到32%,UL94测试达到V-0级。在此基础上,采用MPA6和E-MA-GMA弹性体改性ABS,复合材料仍然保持较高的阻燃性能,拉伸强度略有下降,缺口冲击强度从3.11 kJ/m2提高到4 kJ/m2。  相似文献   

15.
欧育湘  孟征  赵毅 《塑料助剂》2006,(4):7-10,14
综述了用于聚酰胺(PA)和耐高温聚酰胺(HWA)的三大阻燃系统,即聚合型或低聚型溴系阻燃系统、无卤阻燃系统及纳米无机填料(纳米粘土和碳纳米管)的近况,系统地论述了它们的性能及特点,并介绍了它们的生产厂家及商品牌号。  相似文献   

16.
介绍了目前对聚乳酸无卤阻燃改性的几种主要方法,包括磷系阻燃、氮系阻燃、硅系阻燃、金属化合物阻燃、膨胀阻燃及协效阻燃等。在简单介绍聚乳酸性质的基础上,综述了聚乳酸无卤阻燃研究进展,并对聚乳酸的阻燃改性提出了展望。  相似文献   

17.
研究了次磷酸铝(Al Pi)对苯乙烯-丁二烯-丙烯腈三元共聚物(ABS)/聚酰胺(PA)6/苯乙烯-马来酸酐共聚物(SMA)/聚磷酸胺(APP)无卤阻燃材料阻燃性能的影响。采用极限氧指数仪和热重分析仪等研究了改性前后ABS无卤阻燃材料的阻燃性能。结果表明:Al Pi的加入改善了ABS/PA 6/SMA/APP无卤阻燃材料的燃烧性能。固定APP与Al Pi的总质量分数为20%,当m(APP)∶m(Al Pi)为17∶3时,改性ABS无卤阻燃材料的极限氧指数达30%,阻燃等级达到UL-94 V-0级,阻燃材料在700℃的残炭率为7.05%,而未加Al Pi的阻燃材料在700℃的残炭率仅为2.22%。  相似文献   

18.
张丽  安桃芳  刘玉飞 《广东化工》2022,(16):67-68+95
尼龙作为一种高分子材料,具有易燃的缺点,需要对其进行阻燃改性才能拓宽其应用领域。本文综述了尼龙阻燃改性的研究现状、途径和最新研究成果,重点介绍了几种用于尼龙阻燃改性中的无卤阻燃剂,主要有磷系阻燃剂、氮系阻燃剂、磷-氮协效膨胀型阻燃剂、无机阻燃剂、反应型阻燃剂,分析对比了这几种无卤阻燃剂的阻燃机理、研究进展、优点与缺点,对尼龙阻燃剂未来的发展趋势进行了展望。  相似文献   

19.
汤维  钱立军  邱勇  陈雅君  许博  赵震 《中国塑料》2021,35(1):136-149
综述了近年来聚丙烯(PP)材料无卤阻燃改性技术的研究进展,并分析了其阻燃机理.用于PP材料的无卤阻燃剂以镁-铝系阻燃剂,磷系阻燃剂、膨胀型阻燃剂等为主.其中,无卤阻燃PP技术的研究中以成炭剂的开发及其复配方案最多,因此还对PP用成炭剂分子结构、应用方案等进行了详细介绍.  相似文献   

20.
采用硅烷偶联剂(KH560)对三氧化二锑(Sb2O3)进行表面改性处理,并将其协效二乙基次磷酸铝(ADP)应用于聚酰胺6(PA6)阻燃研究。采用傅里叶变换红外光谱和热失重分析对改性Sb2O3进行表征,运用垂直燃烧、氧指数、锥形量热仪、热分析以及扫描电子显微镜和拉曼光谱等对阻燃PA6进行了阻燃性能及机理分析。结果表明,改性 Sb2O3与Sb2O3相比,与ADP具有更好的协同阻燃效应,其作用机制主要是在气相发挥阻燃作用;当ADP含量为8 %,改性Sb2O3含量为2 %时,阻燃PA6复合材料的UL 94等级达到V?0级,极限氧指数达到33.8 %。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号