首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
锂离子动力电池的峰值功率(State of power,SOP)直接影响电动汽车的加速爬坡性能以及回馈制动的能量回收能力,然而其不能直接测量,且准确估计十分困难。这源自于电池内部复杂的电化学特性,尤其是电池运行是一个电热特性相互耦合的过程,过高的充放电功率可能引起电池过热,进而导致电池寿命加速衰减甚至引发安全事故,因此,引入电池温度作为峰值功率的重要约束条件之一,综合电池温度、电压、荷电状态(State of charge,SOC)等多参数约束实现峰值功率预测。首先建立电池电热耦合模型,准确描述电池电、热动态特性;进而在多参数约束条件下预测电池峰值功率;最后,改进了电池热模型的参数辨识方法,并在不同温度环境和动态工况下试验验证电池建模和峰值功率预测方法的有效性,试验结果表明该方法可有效预测电池充放电功率,提高电池使用的安全性。  相似文献   

2.
针对混合动力汽车中镍氢电池组模块,通过人工神经网络算法预测出其在下一时刻的最大充放电功率值.首先,通过查匹配表获得目标值与SOC(剩余电荷量)、电压、温度的对应关系,再选取与目标值相关联的SOC、电压、电流、温度,加上上一时刻预测出的最大充放电功率值作为该人工神经网络的输入变量,通过实验对人工神经网络结构算法进行设计优化.最终得到最大充放电功率预测用人工神经网络模型,经实际数据测试分析,其误差小于8%.此预测对于混合动力汽车在启动和爬坡控制策略有重要的实用意义.  相似文献   

3.
锂离子动力电池的性能和寿命与电池热管理密切相关,而电池产热模型的建立是其热管理的基础。通过理论计算、试验测试和模拟分析对额定容量为50 A·h、额定电压为3.65 V的三元锂离子动力电池的充放电发热特性进行了研究。结果表明:Newman公式在电池发热功率计算中准确度较高,与试验测得发热功率相比误差为8.7%。将理论发热功率应用于模拟仿真后,模组最高温度与试验测得最高温度误差为9.5%,模拟结果可为锂电池的性能研究及热管理设计提供参考。  相似文献   

4.
基于实时反馈的机床热误差在线补偿模型   总被引:1,自引:0,他引:1  
为建立一种能够适应机床不同工况且具有准确预测能力的热误差补偿模型,提出一种基于限定记忆递推最小二乘法辨识热误差模型参数的机床热误差预测建模方法。该方法随着机床工作状况的改变,根据实时反馈的温度和热误差数据,采用递推方法对模型参数进行即时修正,使热误差模型能够及时跟踪机床系统的热特性变化,实现以较高的预测精度对机床热误差进行补偿。通过数控车床主轴轴向热误差辨识建模及补偿实验可以看出,限定记忆递推最小二乘法比一步最小二乘法辨识精度有较大提高,最大残差值减小了52.3%,标准差减小了67%。实验结果表明,利用该方法进行机床热误差模型参数辨识具有较高的预测精度和鲁棒性,有效可行。    相似文献   

5.
燃料电池混合动力系统建模及能量管理算法仿真   总被引:4,自引:1,他引:3  
燃料电池混合动力系统包括燃料电池发动机、直流直流变换器(Direct current to direct current converter, DCDC)、镍氢动力电池和电动机等部件.根据台架试验数据建立燃料电池混合动力系统模型.模型考虑燃料电池性能衰减、总线电压对电动机转矩和效率的影响、DCDC效率和动态过程以及动力电池充放电内阻特性.燃料电池因长时间运行而造成的性能衰减将导致能量管理算法失效.DCDC效率在公交工况下变化不大,其动态过程可以用一阶延迟环节近似.动力电池充放电内阻影响等效氢气消耗量的计算.总线电压对电动机效率与转矩的影响可以用修正系数代替考虑.能量管理算法采用动力电池荷电状态(State of charge, SOC)稳态平衡和燃料电池动态功率补偿相结合的方法,以保持动力电池SOC水平,并在加载过程中防止燃料电池功率突变.仿真结果表明,所建立的模型能反映实际工况中的功率分配情况,动力电池SOC维持在预定区域,燃料电池功率加载速率得到限制.进一步分析表明,随着燃料电池性能衰减,通过调整稳态平衡算法,可以维持SOC水平,保证整车动力性、经济性.  相似文献   

6.
针对锂离子动力电池伪二维(P2D)电化学模型在高倍率放电工况下精度降低的问题,提出基于平均电极模型的修正方法。分析锂离子动力电池电化学平均电极模型灵敏性参数-固相扩散系数与颗粒粒径对模型的影响,基于恒压-恒流充电容量比方法建立电流与固相扩散系数的耦合关系;通过充放电测试获取锂离子动力电池电极颗粒的粒径分布特征,将其归纳为最大粒径、中粒径和最小粒径三种不同粒径颗粒的权重系数,构建了变固相扩散系数三粒子电池电化学模型。搭建了面向单体电池的多倍率放电试验和电池组的NEDC循环工况试验平台,对比分析结果表明,相比传统的P2D电化学模型,提出的变参数模型精度提高了80%,输出电压平均误差不超过0.02 V、最大偏差在0.05 V左右,验证了变参数修正模型的有效性和准确性,为锂离子动力电池管理系统状态估计与控制提供了理论支撑。  相似文献   

7.
具有卓越高比功率特性的超级电容在电动载运工具上备受青睐,开展性能退化机理分析和建模对其高效可靠地工作具有重要意义。为获得全面的老化数据且提升模型的适应性,选用两款超级电容进行不同温度和截止电压条件下的加速老化试验,试验表明温度和截止电压均会影响电容的衰退性能,其中提升截止电压会显著加速内阻增长。为表征超级电容的容量衰退特性和内阻变化规律,采用Box-Cox变换技术将超级电容容量衰退数据转换为线性衰退轨迹以构建线性老化模型,然后应用Arrhenius定律建立数据驱动的超级电容容量和内阻的衰退预测模型。针对不同截止电压和老化状态下超级电容容量衰退差异的问题,构建了全寿命周期的比例系数函数。试验与仿真结果表明,容量衰退轨迹的预测误差在5%以内,内阻变化轨迹的预测误差在10%以内。  相似文献   

8.
插电式混合动力汽车具有电池荷电状态(SOC)使用范围大、整车的工作模式多、用户使用情况复杂等特点,且磷酸铁锂的电池单体电压曲线相对于三元材料的锂离子电池单体曲线更加平坦,低温充电能力差等,因此对锂离子动力电池管理系统的核心功能和性能提出了比纯电动汽车和混合动力汽车更高的要求。开发基于AH积分和静置后上电电压修正以及车载充电机充电修正的SOC估算策略;测试充放电许用功率曲线,开发了动力电池故障、低温低电量下充放电许用功率估算策略。目前东北示范的某型号汽车均采用了此控制策略,整车在各种不同复杂工况、工作模式和高、低温环境条件下运行状态良好,保持较低的动力电池故障率,能够满足示范运营的要求。  相似文献   

9.
单热源作用下滚珠丝杠的温度场建模与热误差预测   总被引:2,自引:1,他引:1  
研究了滚珠丝杠在单热源作用下的温度场模型,以便快速、准确地预测滚珠丝杠的热误差.根据丝杠的导热方程,在合理修改边值条件的基础上,建立滚珠丝杠的温度场理论模型,引入随温度变化的参数α’修正该模型,并提出模型参数的辨识方法.结合机械热变形理论,用所建立的温度场模型预测滚珠丝杠的热误差,进行温度场模型参数辨识实验和模型预测效果的验证实验.结果显示:基于温度场模型预测的温升值与实验测得的温升值之间的最大误差为0.8℃;热误差预测结果与实测结果的最大误差为3.8 μm.结果表明所建立的温度场模型可以较准确地反映滚珠丝杠在单热源作用下的温度分布,进而可以较准确地预测滚珠丝杠的热误差.  相似文献   

10.
伺服系统中滚珠丝杠的温度场模型   总被引:3,自引:3,他引:0  
分析了伺服系统中丝杠螺母的热特性规律,并对丝杠温度场进行了简化建模,以快速准确地预测丝杠温度分布及变化.简化模型能较好地预测丝杠温升过程,但稳态误差较大;通过引进时间修正系数修正了该简化模型,修正后的模型能较好地预测丝杠的稳态温度,但对温度上升过程的预测误差较大;鉴于两个模型的特点,基于分段建模的思想,建立了丝杠温度场...  相似文献   

11.
分析了电池荷电状态(SOC)测量原理,设计了一种基于LTC6804-2的锂电池SOC应用系统,系统硬件包括锂电池电压测量电路、锂电池电芯表壳温度测量电路、锂电池充放电霍尔电流测量电路、LPC2478为嵌入式主控芯片的ARM7电路;系统软件包括LTC6804-2芯片的配置与电池电量数据读取、温度数据读取、充放电电流计算、LPC2478任务管理与通信。经过实际拷机测试,系统运行稳定,系统测量误差小于0.05%,测量精度高,可以推广到UPS在线式电源或矿用锂电池管理系统等工程实际中使用。  相似文献   

12.
为了提升蓄电池充放电控制的准确性,对用户多电源供电储能系统蓄电池充放电控制进行研究。通过设计双向AC/DC变换器实现蓄电池充放电控制,以双向AC/DC变换器一般数学模型为基础,加入同步旋转坐标系构建双向AC/DC变换器dq模型,提升蓄电池充放电控制的准确性;并网运行时,双向AC/DC变换器利用PQ控制策略,完成蓄电池充放电过程中功率平衡控制;离网运行时,双向AC/DC变换器利用V/f控制策略,完成蓄电池充放电过程中电压与频率的平衡控制。实验结果表明,所研究蓄电池充放电控制策略能够有效控制蓄电池充放电,提升蓄电池充放电过程中功率平衡控制的准确性。  相似文献   

13.
针对电动汽车动力电池在充放电工作过程中由于热量聚集而导致的温度场非均匀性问题,采用数值仿真与试验相结合的方法,基于电池内阻温升特性,考虑耦合正负极耳的热影响,建立生热速率的时变内热源模型,获得更加精确的电池温度场分布及其动态变化规律,并深入进行温度一致性分析。以某车用锂离子动力电池为样本,对电池单体及模块分别进行温升计算和三维温度场分析及相应的测试试验。结果表明:同一充/放电倍率下,放电温升明显大于充电温升,且电池最大温差随着倍率的增大而增大;电池的温升是一个随时间先增大后恒定的非线性变化过程,且随着放电倍率的增大电池温升速率越大;电池模块温度场并非电池单体温度场的简单叠加,且在相同充放电倍率下电池模块的热一致性不如电池单体。  相似文献   

14.
由于动力系统特性的不同,针对传统内燃机车辆制定的保养维护策略,对于电动汽车来说并不适用。根据电动汽车的历史运行数据,预测其未来循环里程的变化趋势,可提出个性化的保养维修建议,延长电池系统的使用寿命。首先,基于实车运行的慢充数据,绘制不同充电片段下各电池单体的IC曲线,利用皮尔森相关性分析,提取与里程具有高相关性的特征,形成电池组的IC特征带。此外,研究表明等效循环次数、充电时间和平均温度与循环里程具有非常高的相关性。然后,利用上述特征和IC特征带的均值和宽度,可构造5维特征,以该多维特征为输入量,以循环里程为输出量,利用多种机器学习算法建立不同的数据驱动模型。结果表明,各模型均有较好的预测精度,循环里程预测的平均误差均小于3%,其中支持向量回归模型的预测效果最好,平均误差小于1%。通过对未来循环里程的预测,可有效识别出电池老化衰减速率,为电动汽车的保养维修提供指导和建议。  相似文献   

15.
针对退役锂电池健康状态估计效率较低的现状,提出一种快速、有效的估计方法。首先采用3阶RC等效电路模型描述电池特性得出状态方程,确保电池模型精确性,同时引入电池荷电状态SOC(State of charge)和欧姆内阻(R0)作为状态方程参数。其次利用区域概念,计算出特定的区域容量与区域电压,减少电池参数估计所需要的数据、时间。然后通过扩展卡尔曼滤波(Extended kalman filtering)算法估计电池参数SOC和R0,进而对电池健康状态(State of health, SOH)进行估计。最后,利用电池测试设备(Arbin-BT2000)对18650电池进行充放电实验,验证该方法的可行性。实验结果证明SOH估计所需参数明显减少,使得电池数据测量所需时间明显缩短,并且估计误差不超过4%,误差较小,说明所提出方法能快速、有效地估算出电池SOH。  相似文献   

16.
随着锂离子电池在智能电网、新能源汽车等领域的大规模应用,其充放电能力,即峰值功率的准确预测对于保障系统的安全、可靠运行至关重要。从单体和系统两个层面归纳分析锂离子电池功率状态预测方法的研究进展:针对电池单体预测方法,主要包括测试查表法、黑箱法、等效电路及电化学模型法等,重点阐述多参量约束的等效电路模型法,并进行分类与对比分析;针对电池系统,从电池系统模型及功率状态预测算法两个角度出发,分别讨论了串联型、非串联型电池系统的功率状态预测算法和大数据驱动的智能预测方法,并分析各方法的优缺点及应用领域;结合下一代云计算、大数据、数字孪生等发展趋势,对锂离子电池功率状态预测方法进行展望,为促进电池全生命周期管理技术的研发与应用提供一些思路。  相似文献   

17.
卫星电源系统是卫星服务系统中重要组成部分之一,它的可靠性和寿命很大程度上决定了整个卫星的可靠性和寿命。而卫星电源系统中蓄电池的寿命一直是卫星电源系统寿命的一个瓶颈。在卫星电源系统中蓄电池的不一致是影响卫星电源系统性能的重要因素。本文针对卫星电源系统中蓄电池由于单体性能上的差异造成不均衡进行了研究。重点分析了蓄电池单体电池的不均衡特性的模型和电池组能量分流充电均衡控制的模型。最后提出了通过软件和硬件实现星上电池均衡的方法。  相似文献   

18.
大规模电动汽车随机无序充电将对电网安全运行带来巨大挑战,诸如增大负荷峰谷差、加大运营成本、增加谐波污染等。该文在考虑电动汽车充放电功率约束、电池容量约束的前提下,基于动态分时电价制度,建立电动汽车多目标优化调度模型,以降低电网负荷峰谷差率和用户充电成本,并采用改进学习因子与惯性权重的粒子群优化算法对模型进行求解。仿真结果表明,基于动态分时电价的调度策略比固定电价下优化效果更优,能够更好地减小系统负荷峰谷差率,提高负荷率,增加电力设备的利用率,降低电动汽车充电成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号