首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study focuses on the prediction of acoustic absorption performance of a perforated plate with air jets by theoretical calculations.In addition,we experimentally measured the flow rate,internal pressure,acoustic pressure,and transfer function using an acoustic impedance tube.The normal incidence absorption coefficient was calculated from the measured transfer function using transfer function methods.We investigated the influences of background air space,flow velocity,thickness,aperture rate,and aperture diameter of a perforated plate on the acoustic absorption characteristics.The frequency characteristics of the acoustic absorption coefficient showed a maximum value at a local frequency.As the background air space increased,the peak frequency of acoustic absorption characteristics decreased.As the flow velocity passing through the apertures increased,the peak level of the acoustic absorption coefficient also increased.The theoretical results agreed well with the experimental ones qualitatively.  相似文献   

2.
A standing-wave thermoacoustic engine, employing an acoustic pressure amplifier (APA), is simulated with linear thermoacoustics to study the influence of APA’s dimensions on performance of the thermoacoustic system. Variations of operating parameters, including pressure ratio, acoustic power, hot end temperature of stack etc., versus length and diameter of APA are presented and discussed based on an analysis of pressure and velocity distribution in APA. Simulation results indicate that a largest amplification effect of both pressure ratio and acoustic power output is achieved at a critical length for the occurrence of pressure node and velocity antinode in APA, close to but less than one fourth of the wavelength. The distribution characteristics of pressure and velocity in APA are similar to a standing-wave acoustic field, which is the reason for the amplification effect. From the viewpoint of energy, the amplification effect results from the changed distribution of acoustic energy and acoustic power loss in the thermoacoustic system by APA. Experiments have been carried out to validate the simulation, and experimental data are presented.  相似文献   

3.
A review of impulse turbines for wave energy conversion   总被引:2,自引:0,他引:2  
Oscillating Water Column based wave energy plants convert wave energy into low pressure pnuematic power in the form of bi-directional air flows. Air turbines which are capable of rotating uni-directionally in bi-directional air flow, otherwise also known as self-rectifying turbines, are used to extract mechanical shaft power which is further converted into electrical power by a generator. This paper reviews the state of the art in self-rectifying impulse air turbines. New results on optimum parameters for the fixed-guide-vane impulse turbine are also presented. Starting characteristics and conversion efficiencies of two types of impulse turbines are compared with the well known Wells turbine.  相似文献   

4.
Thermoacoustic technology has drawn increasing attention due to its advantages such as reliability and environmental benignity. Aiming at low‐grade heat recovery, we developed a travelling‐wave thermoacoustic electric generator consisting of a looped travelling‐wave thermoacoustic engine and a linear alternator. In order to explore the operating characteristics of the electric generator, we numerically analyzed the acoustic field characteristics with a modified model. The analysis shows that high acoustic impedance appears in all three stages, and the travelling‐wave component dominates the acoustic field of the loop, which is significant for both thermoacoustic conversion and acoustic power propagation. Furthermore, we also investigated the effects of external electric compliance, resistance, and hot end temperature on the output electric power, thermal‐electric efficiency, and other related parameters. In the experiments, a thermal‐electric efficiency of 3.7% with an output electric power of 24 W has been achieved, when the hot end temperature is 120°C. The relative Carnot efficiency can exceed 14% when the hot end temperature is between 120°C and 190°C. The promising results demonstrate the significant potential of thermoacoustic electric generation in low‐grade heat recovery.  相似文献   

5.
Heat transfer process in thermoacoustic engine is affected by acoustic oscillation which makes it different from the heat transfer in steady flow. This study pays attention to the flow and heat transfer characteristics of thermoacoustic engine driven by loudspeaker. Thermal infrared imager and particle image velocimetry (PIV) were used to investigate the temperature and flow fields under two heat levels (150 °C and 200 °C). The radial and axial temperature distribution was analyzed through dimensionless temperature. To explore the appropriate working frequency, resonance characteristic was discussed. The experimental results illustrated that the first resonance frequency is the most effective driving frequency where thermoacoustic system shows the best performance. Heat transfer mode changed from natural convection to forced convection with the addition of acoustic oscillation. Original temperature field induced by heat convection was destroyed and temperature gradient redistributed as parabolic after sound addition.  相似文献   

6.
The proposal of a novel thermoacoustic regenerator using multi-temperature heat sources (MTHS) makes it possible to utilize lower-grade energy and keep relatively high efficiency in a thermoacoustic engine (TE) simultaneously. Based on thermodynamic laws combined with linear thermoacoustic theory, the time-averaged total power, enthalpy flux, acoustic power, entropy flux, and exergy flux in each component are derived and calculated to further understand the mechanism of a TE with the regenerator using two-temperature heat sources (TTHS). The comparison of the energy flows between the traditional TEs and those utilizing TTHS shows that the improvement of the temperature gradient in the regenerator by adding a mid-heater with appropriate heating power can increase the acoustic power and efficiency of a TE.  相似文献   

7.
This paper investigates an advanced vertical axis turbine to enhance power generation from water energy. The turbine, known as a cycloidal water turbine, is a straight-bladed type adopting a cycloidal blade system that actively controls the rotor blades for improved turbine efficiency, according to the operating conditions. These characteristics enable the turbine to self-start and produce high electric power at a low flow speed, or under complex flow conditions. A parametric study has been carried out by CFD analysis, with various characteristics including different number of blades, chord length variations, variety of tip speed ratios, various hydrofoil shapes, and changing pitch and phase angles. Optimal parameters have been determined, and the performance of the turbine has achieved approximately 70% better performance than that of a fixed pitch turbine. An experimental study has also been carried out which shows that the results correlate quite well with the theoretical predictions although the power output was reduced due to the drag forces of the mechanical devices. Another numerical optimization was carried out to improve the rotor performance by adopting an individual blade control method. Controllable pitch angles were employed to maximize the rotor performance at various operating conditions. The optimized result obtained using genetic algorithm and parallel computing, shows an improvement in performance of around 25% compared with the cycloidal motion.  相似文献   

8.
This paper presents the performance of a Wells turbine operating under unsteady bi-directional airflow conditions. In this study, four kinds of blade profile were selected, NACA0020, NACA0015, CA9 and HSIM 15-262123-1576. The experiments have been carried out for two solidities under sinusoidal and irregular unsteady flow conditions based on Irish waves (Site2). It was found that for a Wells turbine operating under bi-directional air flow, the rotor geometry preferred is the blade profile of CA9 with rotor solidity σ=0.64. In addition, the efficiency curve of the Wells turbine under unidirectional flow conditions fails to present the rapid rise in the instantaneous efficiency which occurs at low flow coefficient of bi-directional flow condition. A comparative analysis between the numerical simulation results and experimental results was carried out. As a result, an excellent agreement was found between the numerical and experimental results. In addition, the effect of blade profile and rotor solidity on hysteretic characteristics of the turbine has been clarified experimentally under bi-directional airflow.  相似文献   

9.
风机输出功率的间歇性与波动性使得风电场并网系统潮流不断变化,并网点(PCC)处消纳功率随之改变,从而影响PCC处负荷等效阻抗并造成复杂并网谐振现象。首先建立电感-电容-电感型(LCL)逆变器并网等效诺顿模型,分析风机输出功率变化时PCC处的负荷等效阻抗特性并利用CIGRE模型计算负荷谐波阻抗,基于已建模型,采用结合元件特征值敏感度的模态分析法分析风电场并网谐振现象,给出各节点谐振参与因子与元件特征值敏感度值等谐振信息。最后,利用PSCAD平台搭建实例仿真模型,在验证所提方法可行性的同时,深入研究了风机输出功率变化时的风电场并网谐振现象。  相似文献   

10.
A novel cascade configuration consisting of one standing wave unit and one travelling wave unit arranged in series is studied in this paper. Theoretically, a straight‐line cascade engine provides an efficient energy conversion, reduces the difficulties of fabrication and allows no Gedeon streaming. In order to achieve such a powerful cascade thermoacoustic engine, the regenerator of the travelling wave unit must be operated in high impedance and travelling wave phasing region. Various techniques of phase adjustment by modifying the configurations and geometrical dimensions of the system are investigated both numerically and experimentally in order to adjust the position of the sweet spot as well as to promote the acoustic impedance in the regenerator. It is found that the effective tuning methods with less modification here are accomplished by changing the volume of down‐cavity and reducing the flow area of down‐resonator by inserting the pencil. The exploration also shows that the acoustic field in the system is quite sensitive to the effect of down‐resonator length. The performance of the proposed system is clearly improved after the phase‐adjustment schemes are completely implemented, in which the regenerator works within the sweep spot zone with high acoustic impedance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
穿孔管消声器有流声学性能的数值预测   总被引:2,自引:0,他引:2  
应用穿孔声阻抗新模型和有流三维有限元方法,预测穿孔管消声器的传递损失,并在消声器试验台上采用双负载法测量消声器的传递损失,预测结果和试验结果吻合良好,表明穿孔声阻抗新模型适用于穿孔管消声器有流声学性能预测。穿孔管消声器传递损失结果显示,随着气流马赫数增加,消声频带有向高频段延伸的趋势,同时通过频率处和高频范围的传递损失也有明显提高。  相似文献   

12.
13.
It is accepted that the thermoacoustic behavior of a given combustion system can be analyzed by investigating how its natural acoustic modes are perturbed by the flame dynamics. As a result, the resonance frequency and structure of the resulting thermoacoustic mode – understood as a perturbed acoustic mode – are slightly modified with respect to the natural acoustic mode counterpart. However, experimental evidence shows that the frequency of unstable thermoacoustic modes sometimes lies far away from the natural acoustic frequencies of the system under study. In many cases, this frequency cannot be associated with hydrodynamic or entropy-related instabilities. In recent years, the intrinsic thermoacoustic (ITA) feedback loop has been formally recognized as the responsible mechanism in some of those situations. Theory and devoted experiments have been developed that have enormously contributed to the understanding of the particular behavior of intrinsic thermoacoustic instabilities.The present review encapsulates in a single theoretical framework the theory presented in the collection of today existing ITA papers, which spread through different cases of study regarding acoustic boundaries – anechoic, partially or fully reflecting – and geometries – duct flames, combustors composed by three coaxial ducts and annular configurations. Several examples are shown that summarize the most relevant results on ITA theory to this day. This review paper also gives special attention to the categorization of ITA modes, given the fact that there is no current agreement on the definition of an ITA mode: one example in this review paper explicitly shows that the proposed categorization methods can indeed be contradictory. Of high interest is also the review of papers illustrating the coexistence of thermoacoustic modes of acoustic and ITA nature, which in turn relate to the recently discovered exceptional points in the thermoacoustic spectrum. Additionally, this paper discusses the ‘counter-intuitive’ evidence that shows that ITA modes can be destabilized when acoustic dissipative elements are added into the system. Finally, it is shown how a single-mode Galerkin expansion may be able to model some ITA eigenfrequencies. This result is suggested in some recent works and is not obvious. The practical relevance of ITA modes in industrial combustion chambers of gas turbines is also discussed together with suggestions for future studies.  相似文献   

14.
This study reports a new concept for power generation from thermal energy, which integrates a thermoacoustic engine (TAE) with a contact-free electret-based electrostatic transducer. The TAE converts thermal energy into high-intensity acoustic energy, while the electret-based electrostatic transducer converts the generated acoustic energy into electricity. The experiments demonstrate the feasibility and potential of the proposed electret-based thermoacoustic-electrostatic power generator (TAEPG). The dynamic response of the electrostatic transducer and energy conversion inside the TAE are further investigated using a lumped element model and a frequency-domain reduced-order network model. Good agreement is achieved between experimental measurements and theoretical predictions. Furthermore, a parametric study is performed to study the effect of key parameters including the external heating power, air gap, and resistive load on the performance of the TAEPG. Results show that an open-circuit voltage amplitude of 4.7 V is produced at a closed-end pressure amplitude of 480 Pa in the experiment, and it is estimated that 25.2% of the acoustic power generated by the TAE has been extracted by the electret-based electrostatic transducer. In this case, the maximum electric power output is measured to be 2.91 μW at a resistive load of around 2.2 MΩ. By increasing the external heating power, the TAEPG can produce a maximum voltage amplitude of 8 V. This work shows that the proposed concept has great potential for developing miniature heat-driven power generators.  相似文献   

15.
In this work an experimental study of flow through a Wells turbine with NACA0015 profiles submitted to an unsteady and bi-directional flow is presented.The experimental set-up of the Department of Mechanical, Chemical and Materials Engineering of the University of Cagliari (DIMCM), can simulate the real operation of a wave energy conversion device based on the principle of an oscillating water column (OWC) equipped with a Wells turbine. The set-up consists of a piston, controlled by a hydraulic system, that moves inside a cylindrical chamber open at the top where the Wells turbine is placed. The piston movement generates the airflow driving the turbine.Experimental investigations were carried out in proximity of the rotor blade using three-dimensional aerodynamic probes to perform a careful characterization of the flow field upstream and downstream of the turbine. The dynamic characteristic of the turbine in terms of dimensionless flow parameters was also determined. The real entity of the hysteresis phenomenon was highlighted for the phases of acceleration and deceleration of the unsteady flow through the turbine. Moreover, the existence of an appropriate correlation between the conventional dimensionless coefficients and a measurable and reliable physical variable was investigated.  相似文献   

16.
ABSTRACT

A thermoacoustic refrigerator is a device that uses acoustic power to pump heat in the absence of harmful refrigerants with no or few moving parts. However, the performance of the thermoacoustic refrigerator, particularly the standing wave types, is currently not competitive compared to its counterpart, the conventional vapor-compression refrigerator. Presently, thermoacoustic refrigeration prototypes only achieved 0.1–0.2 relative coefficient of performance, compared with that of 0.33–0.5 for the conventional vapor-compression refrigerators. Past optimization efforts had been completed based on parametric studies where individual parameters are discretely varied and the final optimized outcome was based on the limited series of numerical/experimental tests. This paper discusses the initial investigation of the optimization of the thermoacoustic refrigerator stack parameters using a multi-objective genetic algorithm. The desired outputs, the maximization of the cooling load and the minimization of the acoustic power at the stack, are obtained with the parameters to be optimized set within some range of values. The stack length and center position are then optimized simultaneously. The optimized results showed that the coefficient of performance of the thermoacoustic refrigerator improves from the published value of 1.3 to 1.37.  相似文献   

17.
A simplified method based on Rayleigh's criterion is developed for evaluating thermoacoustic power conversion in transverse-pin and tortuous stacks. Heat transfer and viscous losses are approximated by steady-flow correlations valid at large acoustic displacements with respect to a longitudinal pitch of a pin stack or a characteristic pore size of a random stack. A Lagrangian approach is employed to calculate temperature fluctuations of oscillating gas parcels inside the stack. A computational example is presented for a stack with an inline pin arrangement placed in a standing acoustic wave. Power conversion and efficiencies are evaluated for conditions relevant to a small-scale system. An indirect comparison is also made between theoretical results and experimental data for a prime mover with a wire mesh stack.  相似文献   

18.
A thermoacoustic engine (TE) converts thermal energy into acoustic power without any mechanical moving parts. It shows several advantages over traditional engines, such as simple configuration, stable operation, and environment-friendly working gas. In order to further improve the performance of a thermoacoustically driven system, methods are needed to focus the acoustic energy of a TE to its load. By theoretical analysis based on linear thermoacoustics, a novel Helmholtz resonator is proposed to increase the transmission ability of a TE, which makes full use of the interaction between inertance and compliance effects. With this configuration, the output pressure amplitude of a TE is amplified and the maximal pressure amplitude can occur at the end of the Helmholtz resonator tube with a length much shorter than 1/4 wavelength. Furthermore, the Helmholtz resonator has shown remarkably increased volume flow rates at both ends. In experiments, a Helmholtz resonator amplifies the pressure ratio from 1.22 to 1.49 and produces pressure amplitude of 0.44 MPa with nitrogen of 2.2 MPa as working gas. Relatively good agreements are obtained between computational and experimental results. This research is instructive for comprehensively understanding the transmission characteristics of acoustic components.  相似文献   

19.
This work proposes a simple calculus procedure based on the linear thermoacoustic theory. The methodology applies on rate of change (time derivative) rather than on steady state temperature distributions so it constitutes a complementary to conventional analysis to perform test on the reliability and applicability of the linear theory. The procedure has been applied to experimental data collected by means of a simple prototype of thermoacoustic device. The apparatus, whose technical characteristics are described in detail along with the data acquisition procedure, has been able to highlight the general features of the thermoacoustic effect. Measurements concern the acoustically generated temperature gradients across a ThermoAcoustic Couple, a structure firstly introduced by Wheatley and coworkers in 1983. The obtained results indicate that heat transfer phenomena are more critical than non linear acoustic behavior in determining the overestimation that theoretical predictions make on experimental values.  相似文献   

20.
T. F. Pedersen 《风能》2004,7(3):163-176
The average airflow inclination in complex terrain may be substantial. The airflow inclination affects wind turbine performance and also affects the cup anemometer being used in power performance measurements. In this article the overall dependence of the power curve on inclined airflow is analysed for its influence on both the wind turbine and the cup anemometer. The wind turbine performance analysis is based on results of measurements and theoretical calculations with the aeroelastic code HAWC coupled to a 3D actuator disc model for varying yaw angle. The cup anemometer analysis at inclined flow is based on an averaging of measured angular characteristics in a wind tunnel with the distribution of airflow inclination angles over time. The relative difference in annual energy production in terrain with inclined airflow compared with flat terrain is simulated for cup anemometers with theoretical optimal angular characteristics for two different definitions of wind speed, as well as for five commercial cup anemometers with measured angular characteristics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号