首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物纤维增强水泥基复合材料的性能研究   总被引:14,自引:1,他引:14  
针对含有钢渣植物纤维增强水泥基复合材料,研究了其基体结构和界面状况对材料性能的影响,探讨了掺入外加剂后基体材料的水化机理,同时采用脲醛树脂对植物纤维进行了表面处理,有效地改善了复合材料的物理性能。  相似文献   

2.
吴昊  王燕 《中国塑料》2004,18(4):90-93
详尽综述了软质泡沫聚合材料动态疲劳性能的概念、重要性、发展过程和测定方法,比较了不同试验方法的科学性,介绍了国际上著名厂家和标准化组织对本项性能的指标要求。  相似文献   

3.
天然植物纤维增强环氧树脂复合材料研究进展   总被引:5,自引:0,他引:5  
从天然植物纤维及其改性方法、基体环氧树脂及特性和复合材料的成型方法等方面综述了近年来国内外利用天然植物纤维增强环氧树脂复合材料的研究进展。  相似文献   

4.
为探讨骨架密实结构聚氨酯混合料的路用性能与力学特性,采用多碎石沥青混凝土的设计理论进行聚氨酯混凝土的组成设计,开展多种性能试验来评价多碎石聚氨酯混凝土路用性能,基于单轴贯入试验及开发的单轴压缩试验和单轴拉伸试验评价多碎石聚氨酯混凝土的力学特性。结果表明:多碎石聚氨酯混凝土的动稳定度分别是基质沥青混合料和沥青玛蹄脂碎石混合料的53.4倍和17.8倍,低温最大弯拉应变分别为2.26倍和1.95倍,疲劳寿命分别为26.0倍和12.7倍;力学特性方面,温度对多碎石聚氨酯混凝土的单轴贯入强度和贯入量影响较小,多碎石聚氨酯混凝土的抗压和抗拉弹性模量远小于水泥混凝土,但大于沥青玛蹄脂碎石混凝土。多碎石聚氨酯混凝土路用性能优异,温度对多碎石聚氨酯混凝土抗剪力学特性影响较小,多单轴拉伸和压缩力学特性介于沥青混合料和水泥混凝土之间,可应用于路面结构铺装中。  相似文献   

5.
选用两组不同的氮磷协效阻燃剂配制不同磷氮比例的阻燃剂溶液,用浸渍阻燃的方法制备了阻燃软质聚氨酯(PUR)泡沫,利用热重分析仪分析不同种类和磷氮比例的阻燃剂对软质PUR泡沫热解特性的影响,找出较优阻燃剂种类及其最适磷氮比例.结果表明,利用NH4H2PO4/(NH4)2SO4阻燃软质PUR泡沫时,其最佳磷氮比例为P:N=1...  相似文献   

6.
废短纤维/橡胶复合材料的力学和疲劳性能   总被引:2,自引:3,他引:2       下载免费PDF全文
考察了橡胶再生废短纤维的表面特性和长度分布,研究了橡胶再生废短纤维/橡胶复合材料(WSFRC)的力学性能以及纤维表面预处理对它的影响,探讨了它在橡胶工业中应用的可能性。对WS-FRC的动态拉伸和压缩疲劳性能也进行了考察。结果表明:随着纤维用量的增加.WSFRC的拉伸和压缩疲劳性能下降;与同样硬度的纯炭黑胶料相比,WSFRC的疲劳温升更低;WSFRC的疲劳性能还随纤维排列方向的不同而变化。  相似文献   

7.
以PTMG-MDI-BDO为基础体系,添加0~0.9%的对位芳纶短纤维,制备了芳纶短纤维增强聚氨酯弹性体复合材料。通过改变芳纶短纤维的添加量,探究了其对制备的复合材料的力学性能、耐低温性能、动态性能、热空气老化性能、热水老化性能和耐磨性能的影响。结果表明,纤维含量的增加能显著提高材料的力学性能;随着纤维含量的增加,材料动态性能下降,热空气老化和热水老化性能下降;纤维含量对材料耐低温性能和耐磨性能没有明显影响。  相似文献   

8.
路琴  杨明 《中国塑料》2014,28(11):1-6
介绍了天然植物纤维(NVF)的种类和性质;概述了NVF与聚丙烯(PP)基体材料相容性的改性方法,主要包括物理改性和化学改性;综述了近年来国内外关于NVF增强PP基复合材料性能的研究进展;展望了PP/NVF复合材料的研究方向  相似文献   

9.
10.
橡胶复合材料疲劳性能研究进展   总被引:10,自引:0,他引:10  
本文综述了橡胶复合材料疲劳的研究现状,分别介绍了橡胶的疲劳、帘线的疲劳以及橡胶-帘线界面间疲劳研究的国内外最新进展,并着重介绍了断裂力学方法和疲劳-寿命图在橡胶复合材料疲劳研究中的应用。  相似文献   

11.
植物纤维增强聚合物基复合材料因其自身的优异性能,被广泛地应用于各个领域,随着研究的深入,需要更加精确、全面的测试与表征手段,用以分析复合材料的各项性能.重点介绍了用于表征复合材料界面黏结性的常用方法,包括微观形貌分析法,纤维结构或组成变化分析法,以及黏结强度测试法.在对这些方法归纳总结的基础上,针对植物纤维特殊性能,提出了相应的意见及建议.  相似文献   

12.
杨守生  康茹 《塑料工业》2005,33(8):57-59
利用锥形量热仪对添加了不同阻燃剂的软质聚氨酯泡沫,在25kW/m^2下,其热释放速率、产烟量、一氧化碳产生量、二氧化碳产生量和点燃时间等进行了试验研究。结果表明,含氯化铵的聚氨酯泡沫燃烧时热释放速率最小,仅是未经阻燃处理的聚氨酯泡沫的热释放速率的11.5%;含硫酸铵的聚氨酯泡沫的产烟量最少,仅是未经阻燃处理的聚氨酯泡沫的产烟量的6.4%;含氯化铵的聚氨酯泡沫燃烧时产生的一氧化碳和二氧化碳都是最少的,分别是未经阻燃处理的聚氨酯泡沫的2,4%和1.6%;点燃时间最长的是含四硼酸钠的聚氨酯泡沫,几乎是未经阻燃处理的聚氨酯泡沫的15倍,其它阻燃剂对聚氨酯泡沫的燃烧性能都有不同程度的影响。  相似文献   

13.
纤维增强复合材料(FRP)因其轻质高强、耐腐蚀等突出优势受到广泛的关注,但其疲劳性能受材料特性、环境条件和载荷条件影响较大。基于唯象学刚度退化理论,研究了FRP材料的疲劳性能在不同温度和应力水平下的变化规律,推导了FRP材料基于温度变化的刚度退化和疲劳寿命预测等效模型,并在已有试验数据基础上对该模型进行了验证,并将之应用于E型玻璃纤维平纹编织层状材料的疲劳性能预测。结果表明:该模型能有效预测FRP材料的刚度退化规律和等效剩余疲劳寿命;FRP材料疲劳性能的温度效应明显,其影响程度甚至可能超过应力幅的影响。  相似文献   

14.
聚氨酯软质泡沫吸油性能的研究   总被引:1,自引:0,他引:1  
以聚醚多元醇(PP0330)和甲苯二异氰酸酯(TDI)等为原料,合成了一种结构良好的聚氨酯软质泡沫,研究了该泡沫的最大吸油量、保油率、吸油速率和缓释性能.结果表明,该泡沫可吸收柴油14.11 g/g、汽油26.41 g/g、甲苯39.01 g/g、四氯化碳43.47 g/g,且保油率达到90%以上.该泡沫材料对油品的缓...  相似文献   

15.
李方  曾勤  张旭玲  曾繁涤 《粘接》2007,28(3):21-23
利用超声分散、酸处理以及表面活性剂分散的方法将碳纳米管分散到蓖麻油中,制备了蓖麻油型聚氨酯/碳纳米管(PUR/CNTs)复合材料,观察了该复合材料的微观结构,探讨了CNTs用量、酸处理时间以及表面活性剂的用量对复合材料粘接性能的影响。结果表明,随着蓖麻油中CNTs用量的增加,该复合材料的粘接强度不断提高,当增加到2%时,粘接强度提高84.4%;硝酸处理3 h的聚氨酯/碳纳米管复合材料的粘接强度最大,比未酸处理的复合材料增加15%;表面活性剂分散的聚氨酯/碳纳米管复合材料的粘接强度能得到进一步的提高。  相似文献   

16.
综述了植物纤维增强高分子基复合材料的发展与应用以及困扰其性能提高的主要问题。简述了几种典型的表面处理方法,如化学方法中的碱处理、界面偶联处理、接枝处理;物理方法中的热处理、蒸汽爆破处理、放电处理以及高能射线辐照处理等方法的优点及其各自存在的问题。对现有工艺方案中的一些共性问题进行了归纳总结,并对植物纤维表面处理的发展提出了建议。  相似文献   

17.
国内外植物纤维增强水泥基复合材料的研究   总被引:1,自引:0,他引:1  
自然界广泛存在的植物纤维的形态具有长径比大,比强度高,比表面积大等优点。纤维在抑制混凝土裂缝发展中具有重要的作用,研究开发植物纤维增强水泥基复合材料不仅能降低混凝土的造价,而且有利于环保和可持续发展,具有深远的意义。文章综述了植物纤维的性能与增强作用、在混凝土应用中的研究进展、发展前景和存在的一些问题。  相似文献   

18.
全植物纤维复合材料的生物降解性能研究   总被引:2,自引:0,他引:2  
研究了一种全天然植物纤维复合材料在纤维素酶和自然土埋作用下,复合材料的失重和力学性能的变化。以氯代氰乙基化植物纤维为基体树脂,剑麻纤维作为增强材料制备了复合材料,考察了该材料的纤维素酶降解(酶质量含量为1%)和土埋降解(6个月)特性,发现塑化木粉具有生物降解性,并且比原木粉具有更强的酶降解性,归因于塑化过程脱除了部分木质素,并扩大了植物纤维的分子结构;另一方面,复合材料层板也比塑化木模压板的酶和土埋降解性强,反映出剑麻纤维自身的降解。酶降解或土埋生物降解均可导致全植物纤维复合材料力学性能下降,表明这类复合材料保持了植物纤维的生物降解性。  相似文献   

19.
植物纤维增强热塑性复合材料的研究进展   总被引:3,自引:0,他引:3  
本文综述了与植物纤维增强热塑性复合材料(WFRTP)性能有关的相关问题,简要介绍了植物纤维的特性,讨论了改善植物纤维增强热塑性复合材料界面相容性的方法,包括物理方法和化学方法;以及WFRTP的加工工艺和应用。  相似文献   

20.
植物纤维在复合材料中的应用与发展   总被引:10,自引:0,他引:10  
综述木纤维、麻纤维和竹纤维等纤维增强塑料复合材料的发展历史及现状,展望植物纤维增强塑料复合材料广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号