首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The grain size and density of the sintered (Zn1 − xAlxO)mIn2O3 bodies decreased with the small Al2O3 content (≤ 0.012), and then increased gradually by further increasing the Al2O3 content. The addition of Al for Zn in the (ZnO)mIn2O3 led to an increase in both the electrical conductivity and the absolute value of the Seebeck coefficient. This indicates that the power factor was significantly enhanced by adding Al for Zn. The thermoelectric power factor was maximized to 1.67 × 10− 3 W m− 1 K− 2 at 1073 K for the (Zn0.992Al0.008O)mIn2O3 sample.  相似文献   

2.
Enhanced thermoelectric properties of NaCo2O4 by adding ZnO   总被引:1,自引:0,他引:1  
K. Park  J.H. Lee 《Materials Letters》2008,62(15):2366-2368
The primary phase present in the as-sintered Na(Co1 − xZnx)2O4 (0 ≤ x ≤ 0.1) bodies was the solid solution of the constituent oxides with a bronze-type layered structure. The electrical conductivity of the Na(Co1 − xZnx)2O4 samples significantly increased with an increase in ZnO content. The sign of the Seebeck coefficient for all samples was positive over the whole temperature range (723-1073 K), i.e., p-type conduction. The power factor of Na(Co0.95Zn0.05)2O4 showed an outstanding power factor (1.7 × 10 3Wm 1 K 2) at 1073 K. The power factor was above four times superior to that of ZnO-free NaCo2O4 (0.4 × 10 3Wm 1 K 2). This originates from an unusually large Seebeck coefficient (415 μVK 1) accompanied with high conductivity (127Ω 1 cm 1) at 1073 K.  相似文献   

3.
Thin films of the mixed CdO-In2O3 system were deposited on glass substrates by the sol-gel technique. The precursor solution was obtained starting from the mixture of two precursor solutions of CdO and In2O3 prepared separately at room temperature. The In atomic concentration percentages (X) in the precursor solution with respect to Cd (1 − X), were: 0, 16, 33, 50, 67, 84 and 100. The films were sintered at two different sintering temperatures (Ts) 450 and 550 °C, and after that, annealed in a 96:4 N2/H2 gas mixture at 350 °C. X-ray diffraction patterns showed three types of films, excluding those constituted only of CdO and In2O3 crystals: i) For X ≤ 50 at.%, the films were constituted of CdO + CdIn2O4 crystals, ii) For X = 67 at.%, the films were only formed of CdIn2O4 crystals and iii) For X = 84 at.% the films were constituted of In2O3 + CdIn2O4 crystals. In all films in the 0 < X < 100 range, the formation CdIn2O4 crystals of this material was prioritized with respect to the formation of CdO and In2O3 materials. All films showed high optical transmission and an increase of the direct band gap value from 2.4 (for CdO) to 3.6 eV (for In2O3), as the X value increases. The resistivity values obtained were in the interval of 8 × 10 4 Ω cm to 106 Ω cm. The CdIn2O4 films had a resistivity value of 8 × 10 3 Ω cm and a band gap value of 3.3 eV.  相似文献   

4.
Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition   总被引:1,自引:0,他引:1  
Sb and Sn coatings were deposited on Ti substrate by the method of cathode deposition, and the Ti/SnO2-Sb2O5 electrodes were obtained by annealing at different temperatures for 3 h. Ti/SnO2-Sb2O5 coating was characterized using technique such as X-ray diffraction (XRD), and scanning electron microscopy (SEM). Ti/SnO2-Sb2O5 electrode calcined at 550 °C exhibits the best catalytic capacity. Ti/SnO2-Sb2O5 electrode obtained by electrodeposition had longer service life and faster degradation capacity compared with that obtained by dip-coating. Accelerated service life tests were carried out in 0.5 mol L− 1 H2SO4 solution with the current density of 100 mA cm− 2. Service life of Ti/SnO2-Sb2O5 electrode prepared in present study was 15 h, and it was only 0.14 h for Ti/SnO2-Sb2O5 electrode obtained by dip-coating.  相似文献   

5.
Inverse spinel zinc stannate (Zn2SnO4, ZTO) films were deposited onto fused quartz glass substrates heated at 800 °C by rf magnetron sputtering using a ceramic ZTO target (Zn:Sn = 2:1). H2 flow ratios [H2/(Ar + H2)] were controlled from 0 to 30% during the depositions. ZTO films deposited at 800 °C possessed a polycrystalline inverse spinel structure. The lowest resistivity of 1.1 × 10− 2 Ω cm was obtained for a ZTO film deposited at 20% H2 flow ratio. The transmittance of the ZTO film was approximately 80% in the visible region.  相似文献   

6.
The optical and electrical properties of vapour phase grown crystals of diluted magnetic semiconductor Zn1 − xCrxTe were investigated for 0 ≤ x ≤ 0.005. The diffuse reflectance spectra exhibited an increase in the fundamental absorption edge (E0) with composition x and were also dominated by a broad absorption band around 5200 cm− 1 arising from 5T2 → 5E transition. The 5T2 and 5E levels originate from the crystal field splitting of the 5D free ion in the ground state. The electrical resistivity measurements revealed semiconducting behaviour of the samples with p-type conductivity in the temperature range of 200-450 K.  相似文献   

7.
The microwave dielectric properties and microstructures of CuO-doped Nd(Zn1/2Ti1/2)O3 ceramics prepared by the conventional solid-state route were investigated. The prepared Nd(Zn1/2Ti1/2)O3 exhibits a mixture of Zn and Ti showing 1:1 order in the B-site. As an appropriate sintering aid, not only did CuO lower the sintering temperature, it could effectively hold back the evaporation of Zn in the Nd(Zn1/2Ti1/2)O3. Moreover, CuO only resided in boundaries, which was confirmed by EDX analysis. The measured lattice parameters of CuO-doped Nd(Zn1/2Ti1/2)O3 (a = 5.4652 ± 0.0005 ?, b = 5.6399 ± 0.0007 ?, c = 7.7797 ± 0.0008 ? and β = 90.01 ± 0.01°) retained identical to that of the pure Nd(Zn1/2Ti1/2)O3 in all cases. In comparison with the pure Nd(Zn1/2Ti1/2)O3 ceramics, specimen with 1 wt.% CuO addition possesses a compatible combination of dielectric properties with a εr of 30.68, a Q × f of 158,000 GHz (at 8 GHz) and a τf of − 45 ppm/°C at 1270 °C. It also indicated a 60 °C lowering in the sintering temperature. The proposed dielectrics can be a very promising candidate material for microwave or millimeter wave applications requiring extremely low dielectric loss.  相似文献   

8.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

9.
Trimanganese tetraoxide (Mn3O4) nanoparticles have been synthesized via hydrothermal process. Nevertheless, homogeneous nanoparticles of Mn3O4 with platelet lozange shape were obtained. The crystallite size ranged from 40 to 70 nm. The Mn3O4 product was investigated by X-ray diffraction, transmission electron microscopy (MET), and impedance spectroscopy. Electrical conductivity measurements showed that the as-synthesized Mn3O4 nanomaterial has a conductivity value which goes from 1.8 10−7 Ω−1 cm−1 at 298 K, to 23 10−5 Ω−1 cm−1 at 493 K. The temperature dependence of the conductivity between 298 and 493 K obeys to Arrhenius law with an activation energy of 0.48 eV.  相似文献   

10.
Mg0.4Al2.4O4 single crystal was grown by the Czochralski method. The measured specific heat values are 0.804-1.06 J g− 1 K− 1 in the temperature range from 298.15 to 573.15 K. The calculated thermal conductivity components are 11.37, 11.47 and 10.77 W m− 1 K− 1 along the [111], [004] and [22?0] direction at 298.15 K. The Vickers microhardness values are 1328-1414 kg mm− 2. These experimental results show that Mg0.4Al2.4O4 crystal is a promising substrate for GaN-based LEDs.  相似文献   

11.
Sm2Zr2O7 co-doped with and without 5 mol.% Yb2O3 and 5 mol.% Gd2O3 were prepared by a pressureless-sintering method at 1973 K for 10 h in air. The relative density, structure and electrical conductivity were investigated by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance spectra measurements. Both Sm2Zr2O7 and (Sm0.9Gd0.05Yb0.05)2Zr2O7 ceramics exhibit a single phase of pyrochlore-type structure. The grain conductivity, grain-boundary conductivity and total conductivity obey the Arrhenius relation, respectively, and gradually increase with increasing temperature from 723 to 1173 K. (Sm0.9Gd0.05Yb0.05)2Zr2O7 ceramic is the oxide-ion conductor in an oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The grain conductivity, grain-boundary conductivity and total conductivity of (Sm0.9Gd0.05Yb0.05)2Zr2O7 with dual Yb3+ + Gd3+ doping are higher than those of undoped Sm2Zr2O7 at identical temperature levels.  相似文献   

12.
The effect of In3+ ion on the optical characteristics of Er3+ ion in Er/Yb:LiNbO3 crystal under 980 nm excitation has been investigated. The Er and Yb contents in the crystals were measured by an inductively coupled plasma atomic emission spectrometer (ICP-AES). A significant enhancement of 1.54 μm emission was observed for Er/Yb:LiNbO3 crystal doped with 1 mol% In2O3. The studies on the UV-vis absorption and the OH absorption spectra indicate that the threshold concentration of In3+ ion decreases with the Er/Yb doping in Er/Yb/In:LiNbO3 crystal. The 1 mol% In2O3 doping results in the reduction of absorption cross section in the UV-vis region, meaning the formation of Er3+ cluster sites. The enhancement of 1.54 μm emission is attributed to the larger probabilities of the cross relaxation processes 4S3/2 + 4I15/2 → 4I9/2 + 4I13/2 (Er), 4S3/2 + 4I15/2 → 4I13/2 + 4I9/2 (Er) and 4I9/2 + 4I15/2 → 4I13/2 + 4I13/2 (Er) induced by Er3+ cluster sites.  相似文献   

13.
The varistor properties of the ZnO-Pr6O11-CoO-Cr2O3-Y2O3-In2O3 ceramics were investigated for different concentrations of In2O3. The increase of In2O3 concentration slightly increased the sintered density (5.60-5.63 g/cm3) and slightly decreased the average grain size (3.4-2.9 μm). The breakdown field increased from 6023 to 14822 V/cm with increasing concentration of In2O3. The nonlinear coefficient increased from 17.6 to 44.6 for up to 0.005 mol%, whereas the further doping caused it to decrease to 36.8. In2O3 acted as an acceptor due to the donor concentration, which decreases in the range of 1.02 × 1017 to 0.24 × 1017/cm3 with increasing concentration of In2O3.  相似文献   

14.
Ternarysemiconductor Zn0.3Cd0.7Te nanoribbons are, firstly, synthesized via a two-step process, and the structure characterizations reveal that the as-synthesized nanoribbons are single-crystalline with a zinc blende structure and a crystal growth direction of [1-10]. Nano-field-effect transistors are fabricated based on single nanoribbon, and the electron transport characteristics demonstrate that the Zn0.3Cd0.7Te ribbons have p-type conductivity with a mobility (μh) of 5.7 cm2V−1S−1 and carrier concentration (nh) about 1.1 × 1017 cm−3. The prepared nanoribbons with significant p-type conductivity will be a very attractive candidate for nanoelectronic devices.  相似文献   

15.
The effects of ZnO additive on the phase formation, microstructure and electrical conduction of Y-doped BaSnO3 have been investigated. The single-phase and dense BaSn0.75Y0.25O3−δ compound with 4 mol% ZnO additive was successfully prepared after sintering at 1300 °C, which significantly reduces the sintering temperature. The conductivities measured under dry and wet air atmospheres reveal that the bulk conductivity of BaSn0.71Y0.25Zn0.04O3−δ is much lower than that of BaSn0.75Y0.25O3−δ. However, ZnO as a sintering aid does not affect the bulk conductivity. The total conductivity of BaSn0.75Y0.25O3−δ with ZnO as the sintering aid is slightly higher than that of unmodified BaSn0.75Y0.25O3−δ, and reaches 2.4 × 10−3 S cm−1 at 621 °C. Therefore, this material can be used as a proton-conducting electrolyte for intermediate temperature solid oxide fuel cells.  相似文献   

16.
L. Zhuang  K.H. Wong 《Thin solid films》2008,516(16):5607-5611
The single-phase epitaxial MgxZn1−xO (0.4 < x < 0.9) alloy films with wide band gap have been deposited on cubic LaAlO3 (LAO) (100) substrates by pulsed laser deposition (PLD). X-ray diffraction measurement and TEM photograph indicate that the cubic phase could be stabilized up to Zn content about 0.6 without any phase separation. Films and substrates have a good heteroepitaxial relationship of (100) MgxZn1−xO||(100)LAO (out-of-plane) and (011)MgxZn1−xO||(010)LAO (in-plane). The lattice parameters a of MgxZn1−xO films increase almost linearly with increasing ZnO composition, while the band gap energy of the materials increases from 5.17 to 5.27 eV by alloying with more MgO. The cross-section morphology reveals layer thickness of about 250-300 nm and AFM scan over a 30 μm × 30 μm area reveals a surface roughness Ra of about 100 nm.  相似文献   

17.
We discuss the fabrication of highly conductive Ta-doped SnO2 (Sn1 − xTaxO2; TTO) thin films on glass by pulse laser deposition. On the basis of the comparison of X-ray diffraction patterns and resistivity (ρ) values between epitaxial films and polycrystalline films deposited on bare glass, we proposed the use of seed-layers for improving the conductivity of the TTO polycrystalline films. We investigated the use of rutile TiO2 and NbO2 as seed-layers; these are isostructural materials of SnO2, which are expected to promote epitaxial-like growth of the TTO films. The films prepared on the 10-nm-thick seed-layers exhibited preferential growth of the TTO (110) plane. The TTO film with = 0.05 on rutile TiO2 exhibited ρ  = 3.5 × 10− 4 Ω cm, which is similar to those of the epitaxial films grown on Al2O3 (0001).  相似文献   

18.
Wide band gap InGaZn6O9 films of thickness ~ 350 nm were deposited on sapphire (0001) at room temperature by using the pulsed laser deposition technique. The transparent films showed the optical transmission of > 80% with the room temperature Hall mobility of ~ 10 cm2/V s and conductivity of 4 × 102 S/cm at a carrier density > 1020 cm− 3. The electrical properties as a function of deposition temperatures revealed that the conductivity and mobility almost retained up to the deposition temperature of 200 °C. The films annealed in different atmospheres suggested oxygen vacancy plays an important role in determining the electrical conductivity of the compound. Room temperature grown heterostructure of n-InGaZn6O9/p-SiC showed a good rectifying behavior with a leakage current density of less than 10− 9 A/cm2, current rectifying ratio of 105 with a forward turn on voltage ~ 3 V, and a breakdown voltage greater than 32 V.  相似文献   

19.
ZnO and Zn1−xCdxO nanocrystallites were prepared by oxidation of zinc arachidate-arachidic acid and zinc arachidate-cadmium arachidate-arachidic acid LB multilayers, respectively. The metal content of the multilayers was controlled by manipulation of subphase composition and pH. Precursor multilayers were oxidized in the temperature range of 400 °C-700 °C. The formation of ZnO and Zn1−xCdxO was confirmed by UV-Visible spectroscopy. Uniformly distributed, isolated and nearly mono-dispersed nanocrystallites of ZnO (11 ± 3 nm) and Zn1−xCdxO (18 ± 6 nm) were obtained.  相似文献   

20.
Highly conducting (σ ∼ 2.6 × 103 Ω−1 cm−1) In4Sn3O12 films have been deposited using pulsed laser deposition (PLD) on glass and quartz substrates held at temperatures between 350 and 550 °C under chamber pressures of between 2.5 and 15 mTorr O2. The crystallinity and the surface roughness of the films were found to increase with increasing substrate temperature. Electron concentrations of the order of 5 × 1020 cm−3 and mobilities as high as 30 cm2 V−1 s−1 were determined from Hall effect measurements performed on the films. Fitting of the transmission spectral profiles in the ultra-violet–visible spectrum has allowed the determination of the refractive index and extinction coefficient for the films. A red-shift in the frequency of plasmon resonance is observed with both increasing substrate temperature and oxygen pressure. Effective masses have been derived from the plasma frequencies and have been found to increase with carrier concentration indicating a non-parabolic conduction band in the material In4Sn3O12. The optical band-gap has been determined as 3.8 eV from the analysis of the absorption edge in the UV. These results highlight the potential of these films as lower In-content functional transparent conducting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号