首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The film structure and H bonding of high deposition rate a-SiGe:H i-layers, deposited by HWCVD and containing ~ 40 at.% Ge, have been investigated using deposition conditions which replicate those used in n-i-p solar cell devices. Increasing the germane source gas depletion in HWCVD causes not only a decrease in solar cell efficiency from 8.64% to less than 7.0%, but also an increase in both the i-layer H preferential attachment ratio (PA) and the film microstructure fraction (R?). Measurements of the XRD medium range order over a wide range of germane depletion indicate that this order is already optimum for the HWCVD i-layers, suggesting that energetic bombardment of a-SiGe:H films may not always be necessary to achieve well ordered films. Preliminary structural comparisons are also made between HWCVD and PECVD device layers.  相似文献   

2.
We present recent progress on hot-wire deposited thin film solar cells and applications of silicon nitride. The cell efficiency reached for μc-Si:H n-i-p solar cells on textured Ag/ZnO presently is 8.5%, in line with the state-of-the-art level for μc-Si:H n-i-p's for any method of deposition. Such cells, used in triple junction cells together with hot-wire deposited proto-Si:H and plasma-deposited SiGe:H, have reached 10.5% efficiency. The single junction μc-Si:H n-i-p cell is entirely stable under prolonged light soaking. The triple junction cell, including protocrystalline i-layers, is within 3% stable, due to the limited thicknesses of the two top cells. The application of SiNx:H at a deposition rate of 3 nm/s to polycrystalline Si wafer solar cells has led to cells with 15.7% efficiency. We have also achieved record high deposition rates of 7.3 nm/s for transparent and dense SiNx;H. Hot-wire SiNx:H is likely to be the first large commercial application of the Hot Wire CVD (Cat-CVD) technology.  相似文献   

3.
《Thin solid films》2006,515(2):452-455
Novel hydrogen dilution profiling (HDP) technique was developed to improve the uniformity in the growth direction of μc-Si:H thin films prepared by hot wire chemical vapor deposition (HWCVD). It was found that the high H dilution ratio reduces the incubation layer from 30 nm to less than 10 nm. A proper design of hydrogen dilution profiling improves the uniformity of crystalline content, Xc, in the growth direction and restrains the formation of micro-voids as well. As a result the compactness of μc-Si:H films with a high crystalline content is enhanced and the stability of μc-Si:H thin film against the oxygen diffusion is much improved. Meanwhile the HDP μc-Si:H films exhibit the low defect states. The high nucleation density from high hydrogen dilution at early stage is a critical parameter to improve the quality of μc-Si:H films.  相似文献   

4.
Hot-wire chemical vapour deposition (HWCVD) was applied for the deposition of intrinsic protocrystalline (proto-Si:H) and microcrystalline silicon (μc-Si:H) absorber layers in thin film solar cells. For a single junction μc-Si:H n-i-p cell on a Ag/ZnO textured back reflector (TBR) with a 2.0 μm i-layer, an 8.5% efficiency was obtained, which showed to be stable after 750 h of light-soaking. The short-circuit current density (Jsc) of this cell was 23.4 mA/cm2, with a high open-circuit voltage (Voc) and fill factor (FF) of 0.545 V and 0.67.Triple junction n-i-p cells were deposited using proto-Si:H, plasma-deposited proto-SiGe:H and μc-Si:H as top, middle and bottom cell absorber layers. With Ag/ZnO TBR's from our lab and United Solar Ovonic LLC, respective initial efficiencies of 10.45% (2.030 V, 7.8 mA/cm2, 0.66) and 10.50% (2.113 V, 7.4 mA/cm2, 0.67) were achieved.  相似文献   

5.
H. Li 《Thin solid films》2008,516(5):755-757
The technique of maintaining a proper crystalline ratio in microcrystalline silicon (μc-Si:H) layers along the thickness direction by decreasing the H2 dilution ratio during deposition (H2 profiling) was introduced by several laboratories while optimizing either n-i-p or p-i-n μc-Si:H cells made by PECVD. With this technique a great increase in the energy conversion efficiency was obtained. Compared to the PECVD technique, the unique characteristics of HWCVD, such as the catalytic reactions, the absence of ion bombardment, the substrate heating by the filaments and filament aging effects, necessitate a different strategy for device optimization. We report in this paper the result of our method of using a reverse H2 profiling technique, i.e. increasing the H2 dilution ratio instead of decreasing it, to improve the performance of μc-Si:H n-i-p cells with an i-layer made by HWCVD. The principle behind this technique is thought to be a compensation effect for the influence of progressing silicidation of the filaments during the growth of μc-Si:H, if the filament current is held constant during growth. The dependence of the material crystallinity on thickness with and without H2 profiling is discussed and solar cell J-V parameters are presented. Thus far, the best efficiency of μc-Si:H n-i-p cells made on a stainless steel substrate with an Ag/ZnO textured back reflector made in house has been improved to 8.5%, which is the highest known efficiency obtained for n-i-p cells with a hot-wire μc-Si:H i-layer.  相似文献   

6.
We study the effects of a-Si:H and μc-Si:H covering layers and an H2 treatment on the characteristics of μc-Si:H thin film solar cells deposited in open single chamber very high frequency plasma enhanced chemical vapor deposition systems. Secondary ion mass spectrometry is used to evaluate the phosphor concentration in the μc-Si:H material. Compared to use of an a-Si:H covering layer, use of a μc-Si:H covering layer reduces dopant contamination by a relative 50%, and improves efficiency by a relative 6%, and use of an H2 treatment reduces dopant contamination by a relative 64%, and improves efficiency by a relative 17%.  相似文献   

7.
The technology of Hot Wire Chemical Vapor Deposition (HWCVD) or Catalytic Chemical Vapor Deposition (Cat-CVD) has made great progress during the last couple of years. This review discusses examples of significant progress. Specifically, silicon nitride deposition by HWCVD (HW-SiNx) is highlighted, as well as thin film silicon single junction and multijunction junction solar cells. The application of HW-SiNx at a deposition rate of 3 nm/s to polycrystalline Si wafer solar cells has led to cells with 15.7% efficiency and preliminary tests of our transparent and dense material obtained at record high deposition rates of 7.3 nm/s yielded 14.9% efficiency. We also present recent progress on Hot-Wire deposited thin film solar cells. The cell efficiency reached for (nanocrystalline) nc-Si:H n-i-p solar cells on textured Ag/ZnO presently is 8.6%. Such cells, used in triple junction cells together with Hot-Wire deposited proto-Si:H and plasma-deposited SiGe:H, have reached 10.9% efficiency. Further, in our research on utilizing the HWCVD technology for roll-to-roll production of flexible thin film solar cells we recently achieved experimental laboratory scale tandem modules with HWCVD active layers with initial efficiencies of 7.4% at an aperture area of 25 cm2.  相似文献   

8.
This article reviews the results obtained in Kaiserslautern for research and development on amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon based thin film solar cells as well as heterojunction solar cells applying entirely or mainly the HWCVD. The activities of the group cover the development of appropriate intrinsic and doped a-Si:H and μc-Si:H films for the different solar cell structures, the realization of many types of such structures with different deposition sequences and the detailed study of their stability behavior. Also the preparation of an HW solar cell on medium size area is demonstrated. Initial and stabilized conversion efficiencies are presented and discussed for the different cell structures realized within about ten years of activity. Main focus will be on the recent activities dealing with the integration of μc-Si:H films into solar cell structures and the extensive study of their stability behavior. In addition the degradation of the applied Ta catalyzer was intensively investigated. Finally advantages and disadvantages will be discussed concerning the commercial use of the HWCVD for solar cell fabrication.  相似文献   

9.
Phosphorous-doped microcrystalline silicon (μc-Si) films were prepared using hot-wire chemical vapor deposition (HWCVD). Structural, electrical and optical properties of these thin films were systematically studied as a function of PH3 gas mixture ratio. We report recent results for p-type crystalline silicon-based heterojunction (HJ) solar cells using the HWCVD n-μc-Si film to form an n-p junction. The surface morphology of the crystalline Si substrate after hydrogen treatment was examined using atomic force microscopy. A transfer length method was used to modify the indium-tin-oxide (ITO) deposition parameters in order to reduce front ITO/n-μc-Si contact resistance. In our best solar cell sample (1 cm2) without any buffer layer, the conversion efficiency of 15.1% has been achieved with an open circuit voltage of 0.615 V, fill factor of 0.71 and short circuit current density of 34.6 mA/cm2 under 100 mW/cm2 condition. The spectral response of this cell will also be discussed.  相似文献   

10.
Quantitative estimation of the specific contact resistivity and energy barrier at the interface between transparent conducting oxide (TCO) and hydrogenated p-type amorphous silicon carbide (a-Si1 − xCx:H(p)) was carried out by inserting an interfacial buffer layer of hydrogenated p-type microcrystalline silicon (μc-Si:H(p)) or hydrogenated p-type amorphous silicon (a-Si:H(p)). In addition, superstrate configuration p-i-n hydrogenated amorphous silicon (a-Si:H) solar cells were fabricated by plasma enhanced chemical vapor deposition to investigate the effect of the inserted buffer layer on the solar cell device. Ultraviolet photoelectron spectroscopy was employed to measure the work functions of the TCO and a-Si1 − xCx:H(p) layers and to allow direct calculations of the energy barriers at the interfaces. Especially interface structures were compared with/without a buffer which is either highly doped μc-Si:H(p) layer or low doped a-Si:H(p) layer, to improve the contact properties of aluminum-doped zinc oxide and a-Si1 − xCx:H(p). Out of the two buffers, the superior contact properties of μc-Si:H(p) buffer could be expected due to its higher conductivity and slightly lower specific contact resistivity. However, the overall solar cell conversion efficiencies were almost the same for both of the buffered structures and the resultant similar efficiencies were attributed to the difference between the fill factors of the solar cells. The effects of the energy barrier heights of the two buffered structures and their influence on solar cell device performances were intensively investigated and discussed with comparisons.  相似文献   

11.
This article reviews the research and development of a-Si:H and μc-Si:H based solar cells by using hot wire chemical vapor deposition (HWCVD). The groups involved and the present status of conversion efficiencies attained are listed and will be discussed for different cell structures realized entirely or partly using this method. There are three main advantages of HWCVD: a quite simple set up, higher useable deposition rates and higher stability of HW-a-Si:H. It will be discussed how these advantages can be exploited to make HWCVD an alternative to plasma enhanced chemical vapor deposition.  相似文献   

12.
We report on the basic properties of amorphous/crystalline hetero-junctions (a-Si:H/c-Si), their effects on the recombination of excess carriers and its influence on the a-Si:H/c-Si hetero-junction solar cells. For that purpose we measured the gap state density distribution of thin a-Si:H layers and determined its dependence on deposition temperature and doping by an improved version of near-UV-photoelectron spectroscopy. Furthermore, the Fermi level position in the a-Si:H and the valence band offset were directly measured. In combination with interface sensitive methods such as surface photovoltage analysis and our numerical simulation program AFORS-HET, we found an optimum in wafer pretreatment, doping and deposition temperature for efficient a-Si:H/c-Si solar cells without an i-type a-Si:H buffer layer. We reached at maximum 19.8% certified efficiency by a deposition at 210 °C with an emitter doping of 2000 ppm of B2H6 on a well cleaned pyramidally structured c-Si(n) wafer.  相似文献   

13.
Passivation of c-Si surface was processed by hot-wire chemical vapor deposition through the pretreatment of atomic hydrogen. The interfacial properties were examined by the admittance spectroscopy. The interfacial property is sensitive to the atomic hydrogen treatment time t H of c-Si substrates rather than the crystallization of the buffer layer. It was found that the t H of 30–60 s is essential for the low defects states in the emitter. The interfacial morphology between nano-crystalline Si (nc-Si:H) layer and c-Si substrates was investigated by high resolution transmission electron microscopy in cross section geometry. The amorphous, mixed epitaxial/amorphous and epitaxy phases were observed as the buffer layer growth at hydrogen dilution ratios of 0, 0.5, 0.86, 0.97, respectively. By optimizing t H and using an epitaxial silicon buffer layer, the efficiency of 17.36% of solar cell with the structure of n epi-Si/i epi-Si/p c-Si was fabricated at 250 °C.  相似文献   

14.
In consequence of previous investigation of individual transparent conductive oxide (TCO) and absorber layers a study was carried out on hydrogenated amorphous silicon (a-Si:H) solar cells with diluted intrinsic a-Si:H absorber layers deposited on glass substrates covered with different TCO films. The TCO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of using different TCO’s as a front contact in solar cells with structure as follows: Corning glass substrate/TCO (800, 950 nm)/p-type μc-Si:H (∼5 nm)/p-type a-Si:H (10 nm)/a-SiC:H buffer layer (∼5 nm)/intrinsic a-Si:H absorber layer with dilution R = [H2]/[SiH4] = 20 (300 nm)/n-type a-Si:H layer (20 nm)/Ag + Al back contact (100 + 200 nm). Diode sputtered ZnO:Ga, textured and non-textured ZnO:Al [3] and commercially fabricated ASAHI (SnO2:F) U-type TCO’s have been used. The morphology and structure of ZnO films were altered by reactive ion etching (RIE) and post-deposition annealing.It can be concluded that the single junction a-Si:H solar cells with ZnO:Al films achieved comparable parameters as those prepared with commercially fabricated ASAHI U-type TCO’s.  相似文献   

15.
Silicon thin-film solar cells based on microcrystalline silicon (μc-Si:H) were prepared in a 30 × 30 cm2 plasma-enhanced chemical vapor deposition reactor using 13.56 or 40.68 MHz plasma excitation frequency. Plasma emission was recorded by optical emission spectroscopy during μc-Si:H absorber layer deposition at deposition rates between 0.5 and 2.5 nm/s. The time course of SiH? and Hβ emission indicated strong drifts in the process conditions particularly at low total gas flows. By actively controlling the SiH4 gas flow, the observed process drifts were successfully suppressed resulting in a more homogeneous i-layer crystallinity along the growth direction. In a deposition regime with efficient usage of the process gas, the μc-Si:H solar cell efficiency was enhanced from 7.9 % up to 8.8 % by applying process control.  相似文献   

16.
To optimize the performance of microcrystalline silicon carbide (µc-SiC:H) window layers in n-i-p type microcrystalline silicon (µc-Si:H) solar cells, the influence of the rhenium filament temperature in the hot wire chemical vapor deposition process on the properties of µc-SiC:H films and corresponding solar cells were studied. The filament temperature TF has a strong effect on the structure and optical properties of µc-SiC:H films. Using these µc-SiC:H films prepared in the range of TF = 1800-2000 °C as window layers in n-side illuminated µc-Si:H solar cells, cell efficiencies of above 8.0% were achieved with 1 µm thick µc-Si:H absorber layer and Ag back reflector.  相似文献   

17.
We applied ex situ spectroscopic ellipsometry (SE) on silicon thin films across the a-Si:H/μc-Si:H transition deposited using different hydrogen dilutions at a high pressure by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). The optical models were based on effective medium approximation (EMA) and effective to estimate the thickness of the amorphous incubation layer and the volume fractions of amorphous, microcrystalline phase and void in μc-Si:H thin films. We obtained an acceptable data fit and the SE results were consistent with that from Raman spectroscopy and atomic force microscopy (AFM). We found a thick incubation layer in μc-Si:H thin films deposited at a high rate of ~ 5 Å/s and this microstructure strongly affected their conductivity.  相似文献   

18.
In this paper, a-Si:H/a-Si:H tandem solar cells have been fabricated using a plasma enhanced chemical vapor deposition. The solar cell has a structure of glass/textured-SnO2/p-a-SiC:H/i-a-Si:H/n-μc-Si:H/p-μc-Si:H/p-a-SiC:H/i-a-Si:H/n-μc-Si:H/gallium-doped zinc oxide/Ag. Higher efficiency in a-Si:H/a-Si:H tandem solar cells can be achieved by use of a good tunnel recombination junction (TRJ) and current matching. Accordingly, solar cells with a n-μc-Si:H/p-μc-Si:H TRJ are investigated. This paper studies the influence of the thickness of the top intrinsic amorphous silicon (i-a-Si:H) layer with regard to short circuit current density and current matching between the top and the bottom cells. Experimental results with lab-fabricated samples show that the optimal thickness of the i-a-Si:H layer in the top and bottom cells is 60 and 250 nm, respectively. An initial conversion efficiency of 10.29% is achieved for the optimized a-Si:H/a-Si:H tandem solar cell. Light-induced degradation of the solar cells is about 17%.  相似文献   

19.
B-doped hydrogenated amorphous silicon carbon (a-Si1−xCx:H) films have been prepared by hot-wire CVD (HWCVD) using SiH3CH3 as the carbon source gas. The optical bandgap energy and dark conductivity of the film are about 1.94 eV and 2 × 10− 9 S/cm, respectively. Using this film as a window layer, we have demonstrated the fabrication of solar cells having a structure of the textured SnO2(Asahi-U)/a-Si1−xCx:H(p)/a-Si1−xCx:H(buffer)/a-Si:H(i)/μc-Si:H(n)/Al. The conversion efficiency of the cell is found to be 7.0%.  相似文献   

20.
Stability of microcrystalline silicon solar cells with HWCVD buffer layer   总被引:1,自引:0,他引:1  
Y. Wang  X. Geng  F. Finger 《Thin solid films》2008,516(5):733-735
Microcrystalline silicon solar cells deposited by VHF-PECVD with or without HWCVD grown p/i interface buffer layer were investigated. We studied long-term stability under storage in ambient atmosphere and performed light soaking experiments. Cells with i-layers covering a wide range of crystalline volume fractions were studied. All cells were stable or degraded slightly after storage for 2 years in air, regardless of crystalline volume fraction or presence of p/i buffer interface. Upon light soaking all cells show efficiency degradation to more or less extent depending on crystal volume fraction of the i-layer and the presence of the buffer layer: the solar cell with high crystal volume fraction are nearly stable, cells with high amorphous volume fraction degrade by up to 20%. The solar cell with HWCVD buffer layer shows better stability in the high efficiency range of relative efficiency degradation typically less than 10% after 1000 h AM 1.5 light soaking. The efficiency degradation is mainly caused by Voc and FF deterioration while Jsc is almost stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号