首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The viscoelastic and peeling properties of polybutadiene/tackifying resin compatible blends have been studied in detail. Viscoelastic properties have been described through the variations of the complex shear modulus, G*(ω), as a function of frequency, ω and peeling properties through the variations of peeling force (F) as a function of peeling rate (V).

After showing the objective character of the peeling curves obtained, the variations of the peeling force and peeling geometry have been studied as a function of volume fraction of the tackifying resin.

In this first paper, the analysis is focused on the first domain of the peeling curves, i.e. the cohesive fracture region. In this region, the peeling properties have been related to the viscoelastic properties in the terminal region of relaxation. It is shown that the longest relaxation time, τo, is a reducing parameter of the peeling curves, so a peeling master curve-which is independent of temperature, resin volume fraction and polymer molecular weight-may be defined. Furthermore, the variations of the test geometry as a function of peeling rate have been investigated: the variations of the radius of curvature of the aluminium foil have been analyzed with respect to the viscoelastic behavior of the adhesive, which in fact governs the test geometry.

A detailed analysis of all these features leads to a model which allows one to calculate the peeling curves in the cohesive domain from the adhesive formulation.  相似文献   

2.
The viscoelastic and peeling properties of polybutadiene/tackifying resin compatible blends have been studied in detail. Viscoelastic properties have been described through the variations of the complex shear modulus, G*(ω), as a function of frequency, ω and peeling properties through the variations of peeling force (F) as a function of peeling rate (V).

After showing the objective character of the peeling curves obtained, the variations of the peeling force and peeling geometry have been studied as a function of volume fraction of the tackifying resin.

In this first paper, the analysis is focused on the first domain of the peeling curves, i.e. the cohesive fracture region. In this region, the peeling properties have been related to the viscoelastic properties in the terminal region of relaxation. It is shown that the longest relaxation time, τo, is a reducing parameter of the peeling curves, so a peeling master curve-which is independent of temperature, resin volume fraction and polymer molecular weight-may be defined. Furthermore, the variations of the test geometry as a function of peeling rate have been investigated: the variations of the radius of curvature of the aluminium foil have been analyzed with respect to the viscoelastic behavior of the adhesive, which in fact governs the test geometry.

A detailed analysis of all these features leads to a model which allows one to calculate the peeling curves in the cohesive domain from the adhesive formulation.  相似文献   

3.
The peel strength of rubber and paint films has been measured over a range of peeling velocities using a dead weight method. At low peel rates the peel force is fairly constant but rises rapidly at higher peeling speeds.

Experiments show that the peel strength is a function both of the energy of interfacial bonds which must be broken as peeling proceeds and of bulk energy losses in a viscoelastic peeling material.

The interfacial effect has two components: an equilibrium surface force which accounts for the peel strength at low velocities, and a viscous peeling force which depends on the peeling rate. This viscous interfacial force explains the increase in peel strength of purely elastic films at higher peeling velocities.

The energy loss in the bulk of the peeling film introduces two additional effects: a magnification of the peel strength in steady peeling over a certain velocity range, and a slowing down or stopping of peeling as transient relaxation occurs shortly after the application of the peel force.  相似文献   

4.
The peel strength of rubber and paint films has been measured over a range of peeling velocities using a dead weight method. At low peel rates the peel force is fairly constant but rises rapidly at higher peeling speeds.

Experiments show that the peel strength is a function both of the energy of interfacial bonds which must be broken as peeling proceeds and of bulk energy losses in a viscoelastic peeling material.

The interfacial effect has two components: an equilibrium surface force which accounts for the peel strength at low velocities, and a viscous peeling force which depends on the peeling rate. This viscous interfacial force explains the increase in peel strength of purely elastic films at higher peeling velocities.

The energy loss in the bulk of the peeling film introduces two additional effects: a magnification of the peel strength in steady peeling over a certain velocity range, and a slowing down or stopping of peeling as transient relaxation occurs shortly after the application of the peel force.  相似文献   

5.
In this paper, the peeling of an elastic adherend from a rigid substrate is analyzed Theologically. The theoretical relation between peel strength and peeling rate is introduced by the stress distribution over the interlayer at the steady state of peeling and by the assumed mechanical properties of the interlayer. Application of the theoretical relation to the experimental data gives us information about the mechanical properties of the interlayer. It may be concluded that in peeling the mechanical properties of the interlayer can be defined and they are related to the mechanical properties of both materials forming the interlayer.  相似文献   

6.
In this paper, the peeling of an elastic adherend from a rigid substrate is analyzed Theologically. The theoretical relation between peel strength and peeling rate is introduced by the stress distribution over the interlayer at the steady state of peeling and by the assumed mechanical properties of the interlayer. Application of the theoretical relation to the experimental data gives us information about the mechanical properties of the interlayer. It may be concluded that in peeling the mechanical properties of the interlayer can be defined and they are related to the mechanical properties of both materials forming the interlayer.  相似文献   

7.
水果去皮剂的研制   总被引:1,自引:0,他引:1  
张自成 《精细化工》1999,16(4):20-22
研制了适用于苹果、梨、桃、李等水果的去皮剂,它由表面活性剂及助剂组成(质量比1∶0.5),表面活性剂选取分子碳数为12的月桂酸及司盘-20(质量比1∶0.5),助剂由柠檬酸、碳酸钠、氯化钠组成(质量比2∶2∶1)。在苹果去皮时,使用去皮剂及氢氧化钠的质量分数分别为0.5%和6%的水溶液,60℃浸泡5~6min,去皮率达到100%。  相似文献   

8.
基于构建的裂纹剥离扩展失效过程的模拟方法,提出了预测临界载荷的方法,并通过界面的临界应变能释放率与损伤起始应力,构建了预防界面裂纹剥离扩展失效的等值临界真空压力约束预防控制线和设计准则。结果表明,临界压力载荷受控于界面初始预裂纹长度、复合界面的临界应变能释放率(GIC)和损伤起始应力(T0),与界面初始预裂纹长度呈负关联关系,而与临界应变能释放率与损伤起始应力呈正关联关系;当初始预裂纹长度由11.11 %增至15.55 %时,临界压力载荷(Pc)由87.6 kPa降至为57 kPa,降幅为34.9 %;内衬界面剥离韧性参数(T0,GIC)的坐标点位于等值临界真空压力约束控制线之上,可有效预防内衬界面剥离扩展失效。  相似文献   

9.
Tack properties and peeling behavior of crosslinked polyacrylic pressure-sensitive adhesives were investigated. The model adhesive was a crosslinked poly(n-butyl acrylate-acrylic acid) random copolymer with an acrylic acid content of 5?mol% with various crosslinking degrees. Tack was measured using a probe tack test with probe rates of 1 and 10?mm/s and various contact time. The tack increased with contact time. The degree of tack rising with contact time decreased with an increase in crosslinking degree for 10?mm/s, while the tendency was opposite for 1?mm/s. The temperature dependency of tack was measured with a contact time of 30?s. The tack peak shifted to higher temperatures with an increase in crosslinking degree and probe rate. Peeling behavior was observed using high-speed microscopy. The peeling behavior changed from A to C with the decrease of peeling rate and crosslinking degree. A: Cavitation and peeling progressed simultaneously at maximum stress at 10?mm/s independent on the crosslinking degree. B: Cavitation occurred at the edge of the probe at low stress and spread to the center of the probe at maximum stress at 1?mm/s and high crosslinking degree, then peeled out. C: After B, fibrillation occurred at 1?mm/s with low crosslinking degree. The change of peeling behavior was caused by the following: the interfacial adhesion increased, while the cohesive strength decreased as crosslinking degree and probe rate decreased.  相似文献   

10.
Studies on the peel behavior of pressure-sensitive tape comprising a polyester backing and polyacrylate adhesive have shown that, in peeling from a plane glass surface, three fundamentally different modes of peeling may be distinguished, depending upon the rate of pulling. At low rates, deformation by flow of the adhesive appears to determine the peel behavior and the peel force is strongly rate dependent. At high rates, little or no viscous deformation of the adhesive occurs and the peel force is independent of rate. At intermediate pulling rates, cyclical instability of made of failure involving alternate storage and dissipation of elastic energy in the backing, results in the phenomenon of “slip-stick” peeling, in which failure is jerky and regular. Results have been obtained which show how the pulling rates at which transitions from one mode of peel to another occur, and the peel force values for a given type of failure, depend upon such factors as molecular weight of adhesive, thickness of backing film, and angle of peeling.  相似文献   

11.
The formation of sawtooth-shaped stringiness during 90° peeling was investigated using crosslinked poly(n-butyl acrylate–acrylic acid) and poly(2-ethylhexyl acrylate–acrylic acid) random copolymers with an acrylic acid content of 5 wt.% and different crosslinking degrees as pressure-sensitive adhesives (PSAs). The gel fraction was measured by toluene extraction of PSA, and it increased with crosslinker content for both systems. The observed stringiness was sawtooth-shaped, but there were three different types; both the typical sawtooth shape and the frame formed at the front tip with interfacial failure, and the sawtooth shape formed with cohesive failure. The change in the stringiness shape was affected strongly by the gel fraction of PSA. The peel rate under constant peel load was measured and revealed that the peel rate was lowest upon formation of the front frame type. A good relation was found between peel rate and peel strength, with a greater peel strength upon formation of the front frame type. The concentrated stress at the peeling tip is released by progress of peeling and deformation of the adhesive layer (stringiness) for no frame type. On the other hand, the sufficient interfacial adhesion delays the progress of peeling, and the applied larger stress causes cavitation in the PSA layer for front frame type. The formed cavity grows and the front frame type formed as a result. That is, internal deformation occurred preferentially over peeling. In order to improve the peel strength, the front frame type is the most useful stringiness shape.  相似文献   

12.
针对钢丝帘布剥离测试结果的系统性不稳定情况,研究剥离力测试结果的影响因素。结果表明:利用夹持端包布提高夹持摩擦力不能改善剥离测试效果,反而导致试样水平端面硫化压力分布不均造成剥离力下降;帘布间敷贴带束胶片虽然能大幅提高剥离力,但从剥离后覆胶状态来看更多反映的是帘布间胶料的撕裂强度;剥离拉伸速率越大,胶料破坏方向越平直,剥离力有下降趋势;硫化时间太长导致的硫化返原可明显降低剥离力。  相似文献   

13.
The micro-fracture mechanism of peeling is studied by means of a “bond stress analyses” which permits direct measurement of the distribution of normal or “cleavage” type stresses localized at the propagating boundary of failure. Improved instrumentation now permits direct stress analysis over nearly three decades of peeling rate. Experimental stress distributions are presented for an acrylic adhesive peeled from stainless steel. This study covers the transition region from elastomeric to flow state response where the viscoelastic transition from apparent interfacial to cohesive failure is observed for this acrylic copolymer. The major features of the cleavage stress distribution are qualitatively interpreted in terms of a cavitation-filamentation model which describes entanglement slippage as the dominant rate factor for cleavage response.  相似文献   

14.
The factors governing interfacial separation in lightly cross-linked polymer adhesives at low pulling rates as demonstrated by their stringiness phenomenon are investigated.

Cohesive failure and adhesive/substrate interfacial separation of uncross-linked polymer adhesives have been adequately explained. However, in lightly cross-linked polymer adhesives, where cohesive failure cannot occur because there is no viscous flow, there are two regions of interfacial separation at low rate and this phemonenon cannot be readily explained by present viscoelastic theories.

Investigation of the stringiness phenomenon of peeling pressure-sensitive adhesive tapes at constant loads shows that two peeling speeds exist for any peeling load up to the vicinity of 200 g/25 mm. Also it is clear that stringiness structure differs greatly at each peeling speed. The stringiness phenomenon of each of these two regions is analyzed using Miyagi's observation apparatus. These two measurements are then reversed and a comparison shows that the two peeling speeds correspond to each steady peeling region.

This field of investigation, when added to the present viscoelastic property studies, should lead to a new peeling adhesive theory which, in turn, may lead to the development of new high peel force pressure-sensitive adhesives.  相似文献   

15.
The influences of debonding rate and temperature on the peel behavior of polyacrylic block copolymer/tackifier system were investigated. Poly(methyl methacrylate)-block-poly(n-butyl acrylate)-block-poly(methyl methacrylate) triblock copolymer (MAM) with hard block contents of 23 (MAM-23) and 16 wt.% (MAM-16) and a 1/1 blend with a diblock copolymer (MA) consisting of the same components (MAM-23/MA, total hard block content of 15 wt.%) were used as the base polymer. A special rosin ester was used as a tackifier at various contents in the block copolymer/tackifier system. The peeling process at the probe/adhesive interface during probe tack testing was observed using a high-speed microscope at 23 °C with debonding rate of 10 mm/s. Three different peeling mechanisms were observed. Type A, where peeling progressed linearly from the edge to the center of the probe without cavitation (MAM-23). Type B, where peeling progressed linearly from the edge to the center of the probe with cavitation (MAM-16). Type C, where cavitation occurred over the entire adhesive layer, and peeling initiation was delayed (MAM-23/MA). The peel behavior of MAM-23 changed from Type A to Type B with a decrease of the debonding rate (1 mm/s) or increase of the temperature (40 °C). In contrast, there was no change for MAM-16 and MAM-23/MA. Cavity formation in an adhesive layer restrains peeling; therefore, it is desirable for improvement of the adhesion strength. The tack properties increased with the tackifier content, and the formation of cavitation was less than that for the systems without the tackifier.  相似文献   

16.
The viscoelastic and peeling properties of polybutadiene/tackifying resin compatible blends have been studied in detail. Viscoelastic properties have been described through the variations of the complex shear modulus, G*(w), as a function of frequency, W, and peeling properties through the variations of peeling force (F) as a function of peeling rate (V).

The first paper of this series presented the cohesive fracture domain and the present paper explores the interfacial fracture domain: (i) rubbery interfacial (interfacial 1); (ii) stick-slip; (iii) glassy interfacial (interfacial 2). After a general survey of the properties in the three domains we present a quantitative relationship between the peeling and linear viscoelastic properties as a function of the adhesive formulation, discussing the use of time-temperature equivalence for adhesive properties. The third part of the paper presents the trumpet model of de Gennes describing the crack shape and propagation: starting from a mechanical analysis of the peeling test, it is shown how one may calculate the variations of the peeling force as a function of peeling rate in the various interfacial fracture domains: this model defines a single interfacial fracture criterion which coexists with the cohesive fracture criterion defined earlier, whatever the fracture location.

We present as a conclusion a critical discussion of the relevance and physical meaning of such a criterion and present a new outlook for the modeling and improvement of adhesive formulations.  相似文献   

17.
The viscoelastic and peeling properties of polybutadiene/tackifying resin compatible blends have been studied in detail. Viscoelastic properties have been described through the variations of the complex shear modulus, G*(w), as a function of frequency, W, and peeling properties through the variations of peeling force (F) as a function of peeling rate (V).

The first paper of this series presented the cohesive fracture domain and the present paper explores the interfacial fracture domain: (i) rubbery interfacial (interfacial 1); (ii) stick-slip; (iii) glassy interfacial (interfacial 2). After a general survey of the properties in the three domains we present a quantitative relationship between the peeling and linear viscoelastic properties as a function of the adhesive formulation, discussing the use of time-temperature equivalence for adhesive properties. The third part of the paper presents the trumpet model of de Gennes describing the crack shape and propagation: starting from a mechanical analysis of the peeling test, it is shown how one may calculate the variations of the peeling force as a function of peeling rate in the various interfacial fracture domains: this model defines a single interfacial fracture criterion which coexists with the cohesive fracture criterion defined earlier, whatever the fracture location.

We present as a conclusion a critical discussion of the relevance and physical meaning of such a criterion and present a new outlook for the modeling and improvement of adhesive formulations.  相似文献   

18.
郭远凯  何江 《广东化工》2006,33(3):10-11,17
研究了以乙醇-石油醚为萃取剂,在微波场作用下,影响微波萃取柚皮色素的各项因素。结果表明:在微波功率为480W,微波萃取作用时间为15min下所得橙黄色素不仅收率最高,而且性能稳定,质量较好。  相似文献   

19.
The micro-fracture mechanism of peeling is studied by means of a “bond stress analyses” which permits direct measurement of the distribution of normal or “cleavage” type stresses localized at the propagating boundary of failure. Improved instrumentation now permits direct stress analysis over nearly three decades of peeling rate. Experimental stress distributions are presented for an acrylic adhesive peeled from stainless steel. This study covers the transition region from elastomeric to flow state response where the viscoelastic transition from apparent interfacial to cohesive failure is observed for this acrylic copolymer. The major features of the cleavage stress distribution are qualitatively interpreted in terms of a cavitation-filamentation model which describes entanglement slippage as the dominant rate factor for cleavage response.  相似文献   

20.
计操  周国发 《中国塑料》2021,35(3):59-66
针对金属基聚合物复合材料易诱发界面剥离损伤失效的共性问题,研究了通过多层复合组装注射成型,在聚合物复合层与粘接层界面形成短纤维桥接,实现复合界面强化.基于内聚力剥离损伤模型,构建了短纤维桥接强化界面剥离裂纹扩展断裂失效过程的模拟仿真技术,模拟建立了界面剥离裂纹快速失稳扩展断裂损伤失效临界载荷—桥接纤维特性—界面剥离断裂...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号