首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AlPO4-34 is a fluorine containing aluminophosphate with two fluorine atoms located in the bridge of two octahedrally coordinated Al atoms of a 4-ring. It has a unit cell composition (C4H10NO+)2 (AlPO4)6F2 ? with the stoichiometric value of Al:P:F being 3:3:1 (F/Al?=?0.33) and to be named as AlPO4-34F. The presence of fluorine in the reacting gels favors the formation of AlPO4-34 structure, but hinders the growth of its large crystals. In present work, a seesaw effect between organic template and hydrofluoric acid on the crystallization of AlPO4-34 has been found and used to synthesize AlPO4-34 with F/Al in the framework lower than 0.33. Large single crystal of AlPO4-34 has been prepared from a gel having the molar ratio of HF/Al2O3?=?0.125. Single crystals refinement has shown that the unit cell formula of the AlPO4-34 is (C4H10NO+)2(AlPO4)6F 1.18 ? (OH) 0.82 ? (H2O)0.5. The molar ratio of Al:P:F:Ob is 3:3:0.59:0.41 with 40% fluoride ions being substituted by oxygen species (Ob: oxygen atoms in the bridges of Al?CO?CAl). Ion chromatography analysis has confirmed the partial substitution of fluorine by oxygen. It was named as AlPO4-34P. Thermal analyses have shown that oxygen species in the bridge position of two octahedrally coordinated Al atoms are more instable than fluoride ions. Under heating, the AlPO4-34P will transform to chabazite structure at a temperature lower than AlPO4-34F.  相似文献   

2.
J.P. Zhai  Z.M. Li  I.L. Li  X.J. Hu 《Carbon》2006,44(7):1151-1157
Single-walled 0.4 nm carbon nanotubes (SWNTs) were fabricated using various metal cation substituted AlPO4-5 (MeAPO-5) molecular sieves as the template. The catalytic behavior varies with different metal incorporation. The incorporation of metal cations (Mn, Mg, Co) and Si gives rise to the formation of negatively charged frameworks and Brønsted acid sites. These frameworks thus play an important catalytic role in the pyrolysis and conversion of the organic molecules to SWNTs within the crystal channels. It is shown that the MeAPO-5 single crystals have a higher density of SWNTs than those crystals without the metal cations. The experimental results agree with the predictions of first-principles calculations, which show the metal-incorporated frameworks to be favorable for the SWNTs formation.  相似文献   

3.
The interband optical properties of single‐crystal berlinite AlPO4 have been investigated in the vacuum ultraviolet (VUV) range using VUV spectroscopy and spectroscopic ellipsometry. The complex optical properties were directly determined from 0.8 to 45 eV. Band gap energies, index of refraction and complex dielectric functions, oscillator index sum rule, and energy loss functions were calculated through Kramers–Kronig transformation. Direct and indirect band gap energies of AlPO4 over the absorption coefficient range of 33–11 000 cm?1 are 8.06 and 7.89 eV, respectively. The index of refraction at 2 eV, nvis, is 1.51. The interband transition features at 10.4, 11.4, 14.2, 16.2, 17.3, 21, 22.5, 24.5, and 31 eV were indexed and correlated with the electronic structure of AlPO4. Strong similarities were observed between AlPO4 and its structural isomorph SiO2 in the exciton and interband transitions, resulting from the similarity of their constituent tetrahedra and the strong electron localization therein. The London dispersion spectrum for AlPO4 was calculated, and the Hamaker coefficients for AlPO4 with various interlayers were calculated using the Lifshitz method. These results elucidate the role of phosphate complex anions on the electronic structure and van der Waals forces in important organic and inorganic systems.  相似文献   

4.
Temperature-programmed desorption (TPD) and electron spin resonance (ESR) techniques have been employed to investigate the oxygen adsorbed on the paramagnetic defect centers in dehydroxylated AlPO4-20, AlPO4-11, AlPO4-5, and VPI-5 molecular sieves. Two different adsorption sites are observed for the small-pore AlPO4-20, where oxygen is entrapped within the intracrystalline voids generated during the calcination step, as well as within the β-cages. However, the unidimensional molecular sieves AlPO4-11, AlPO4-5, and VPI-5 have only one type of adsorption site within their inner pores. The apparent activation energies of desorption (12.0-21.7 kcal mol-1) determined from the oxygen TPD results demonstrate that, as the pore size of the AlPO4 molecular sieve is larger, the interaction between the adsorbed oxygen and the molecular sieve framework becomes weaker. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Of the AlPO4-based molecular sieves, A1PO4, SAPOs, and MeAPOs of different pore sizes were prepared at 100-200°C by a hydrothermal crystallization method. This study was purposed to maximize the yield of light olefins through methanol conversion. Crystal structure was confirmed by means of XRD and SEM, and acidity was examined by TPD and IR of adsorbed ammonia on the catalysts. It was found that SAPO-34 exhibited more than 90% selectivity for light olefins such as ethylene, propylene, and butylene due to shape selectivity through small pores, although it had a strong acidity. MeAPO-34 exhibited slightly lower selectivity for light olefins than SAPO-34 and different product distribution, depending on the electronegativity of the metal in its framework. SAPO17 and SAPO-44, which have the same pore size with SAPO-34 but different pore structure from SAPO-34, showed less selectivity for light olefins than SAPO-34.  相似文献   

6.
With a characteristic of S-shaped water sorption isotherms, AlPO4-5 molecular sieves have been considered as up-and-coming adsorbents for the utilization in adsorptive cooling and heating systems. In order to avoid toxicity and corrosion of fluoride, this paper introduced a fluorine-free microwave hydrothermal synthesis strategy of pure AlPO4-5 crystals. The effects of hydrothermal conditions including template agent, crystallization temperature and time on the performances of AlPO4-5 adsorbents were systematically investigated. Fourier transform infrared spectroscopy, X-ray diffraction (XRD), 27Al and 31P solid state magic angle spinning nuclear magnetic resonance (MAS NMR), pore size analyzer and Scanning electron microscopy (SEM) were used to determine the chemical structure, crystalloid phase, framework, pore structure and the morphology. Adsorption and desorption performances were measured by static adsorption, thermogravimetry and temperature programmed desorption. XRD results indicated that both triethylamine and tetraethylammonium hydroxide as templates, AlPO4-5 crystals could quickly be synthesized within 30–45 min under fluorine-free microwave irradiation. By comparison, the adsorption and desorption performance of the former (recorded as AlPO4-5A) was superior to that of the latter (recorded as AlPO4-5H). FT-IR, MAS NMR and SEM results revealed that AlPO4-5 crystals have the frameworks of alternating AlO4 and PO4 units and typical hexagonal rod-like morphologies.  相似文献   

7.
Ultra-small single-walled carbon nanotubes (SWNTs) with diameter of 0.4 nm were fabricated in the channels of AlPO4-5 crystals by pyrolyzing hydrocarbon molecules. In order to improve the structural quality of the SWNTs, we introduced Br?nsted acid sites onto the channel walls by incorporating metal cations (Mn, Mg, Co, and Si) into AlPO4-5 framework. The Br?nsted acid sites play an important catalytic role in the carbonization of hydrocarbon molecules (tripropylamine) in the AlPO4-5 channels, and favor the formation of SWNTs, as revealed by the significant decrease in formation energy of the nanotubes. The experimental results agree well with the predictions of first-principles calculations.  相似文献   

8.
The influence of water content on the crystallization of the microporous aluminophosphate AlPO4-11 was investigated by a combination of in situ UV Raman and ex situ XRD and NMR characterizations. Under high water content conditions (Al2O3:H2O = 1:20-69), an AlPO4-5 intermediated formed first and later co-existed with AlPO4-11. In the last stage of crystallization, the crystalline AlPO4-5 completely disappeared and well-crystallized AlPO4-11 was obtained. The position of the three signals observed in the 31P MAS NMR spectra of the isolated solid samples did not change during the hydrothermal treatment, suggesting that the fragments containing the P site in the junction of 6- and 4-membered rings of both AlPO4-5 and AlPO4-11 formed first and that the environments of the P sites were very similar to those in the final structure. A significant increase of Al concentration in liquid media was observed before the appearance of XRD detectable AlPO4-11. Under low water content conditions (Al2O3:H2O = 1:15), the AlPO4-11 was directly crystallized from the initial mixture. In situ Raman spectra showed that the 10-membered rings were complete by the time the transformation of octahedral Al to tetrahedral Al was finished and that the conformation of the protonated di-(i-propyl)amine changed little during the crystallization. The present study showed that the composition of the liquid phase is critical to the formation of a specific structure.  相似文献   

9.
Ultra-small single-walled carbon nanotubes (SWNTs) with diameter of 0.4 nm were fabricated in the channels of AlPO4-5 crystals by pyrolyzing hydrocarbon molecules. In order to improve the structural quality of the SWNTs, we introduced Brønsted acid sites onto the channel walls by incorporating metal cations (Mn, Mg, Co, and Si) into AlPO4-5 framework. The Brønsted acid sites play an important catalytic role in the carbonization of hydrocarbon molecules (tripropylamine) in the AlPO4-5 channels, and favor the formation of SWNTs, as revealed by the significant decrease in formation energy of the nanotubes. The experimental results agree well with the predictions of first-principles calculations.  相似文献   

10.
We present a strategy toward the rational synthesis of microporous materials by combination of computational and combinatorial approach. In terms of nonbonding interaction energies of host–guest calculated by the molecular dynamics simulations using Cerius2package, the templating abilities of various organic amines in the formation of microporous aluminophosphate AlPO4-21 have been evaluated. Through rational selection of the predicted suitable templates, such as ethanolamine, trimethylamine and N, N, N′, N′-tetramethylenediamine, AlPO4-21 has been successfully synthesized by hydrothermal combinatorial approaches in the reaction system 1.0Al(iOPr)3-xH3PO4-yR-255.0H2O (R amines). The as-synthesized products are characterized by automated X-ray powder diffraction, ICP, TG, and single-crystal X-ray diffraction analyses. Their framework structures belong to zeotype AWO, which possesses eight-membered ring channels along [001] direction.  相似文献   

11.
The reaction of copper salts with AlPO4-5 or Vv-VAPO-5 under acidic (CuCl2, pH adjusted to 2) but especially basic conditions (Cu(NH3) 4 2+ , pH adjusted to 9) gives ion incorporations greater than expected by a simple ion exchange mechanism (both AlPO4-5 and Vv-VAPO-5 could be expected to have no cation exchange capacity). Ion incorporation is proposed to occur initially at defect sites, and examination of the ESR spectrum of a dehydrated, evacuated CuCl2-exchanged AlPO4-5 shows that these defect sites give rise to a number of unique environments upon CuII incorporation. The CuCl2-exchanged VAPO-5 retains a significant toluene accessibility to the Vv sites in the VAPO-5. However, the toluene accessibility in the Cu(NH3) 4 2+ -exchanged VAPO-5 is significantly reduced and we propose this is due to a combination of the presence of crystalline CuO and structural collapse from reaction with base (NH4OH). The ability of treatment with base (NH4OH, pH 13) to restrict access of toluene to the Vv sites of the original VAPO-5 was verified in a separate experiment.  相似文献   

12.
In this work, we have reported a universal method for the synthesis of metal nanoparticles coated with graphite layer in AlPO4 based matrix. As an example, graphitized carbon coated Ag, Pt, Cu and Ni nanoparticles were synthesized in the amorphous AlPO4 based matrix. The metal nanoparticles were protected from oxidation up to very high temperatures due to the low oxygen diffusivity in AlPO4 based matrix and carbon coating over the metal nanoparticles. The oxidation states of the Ag and Ni nanoparticles were detected with the help of X‐ray photoelectron spectroscopy. The synthesis technique followed very simple methodology. The entire processing including heat treatments at higher temperatures were carried out in oxidative atmosphere. The mechanism for the formation of metal particle in AlPO4 based matrix has also been addressed. This approach can be a universal approach to achieve metal nanoparticles in AlPO4 based matrix. Finally, catalyzing activities of the AlPO4‐Cu nanocomposites in the oxidation of cyclohexane, AlPO4‐Ni and AlPO4‐Pt nanocomposites in the reduction in 4‐nitrophenol were successfully investigated.  相似文献   

13.
Results are reported for the molar conductivities at 25°C of N,N—dimethylacetamide (DMA) solutions of Bu4NBF4 and Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) tetrafluoroborates. The limiting molar conductivities of [M(DMA)6]2+ (M  MN, Co, Ni, Cu, Zn) and BF?4, as well as association constants for Co(BF4)2 in DMA solutions have been calculated. The slight differences between conductometric curves of different metal ions are discussed.  相似文献   

14.
Brønsted acid sites on fluoride-modified AlPO4-Al2O3 (2.5 wt% F; APAl-P-2.5F) catalyst are poisoned by the presence of 2,6-dimethylpyridine (DMPY) and hexamethyldisilazane (HMDS), thus decreasing the catalytic activity for cyclohexene and cumene reaction processes, while the effect of pyridine (PY) was scarce. Besides, the drop in activity for cyclohexene conversion was accompanied by a change in reaction selectivity so that hydrogen transfer sites are much more sensitive to base poisoning (getting greater as the poisoning effect increased) than isomerization sites. Moreover, surface trimethylsilyl (TMS) complexes (formed by covalent reaction of HMDS with surface hydroxyls) decomposed and thus, the activity progressively increased at increasing time intervals, thus reaching greater values (at ca. 4 h) than the unpoisoned APAl-P-2.5F catalyst. So, DMPY was more suitable than PY and HMDS for the poisoning of Brønsted acid sites on APAl-P-F catalyst.  相似文献   

15.
Argon, nitrogen, and neopentane adsorption isotherms from molecular sieves are recorded at 87 K, 77 K, and 273 K, respectively, by a quasi-equilibrium, high resolution gas sorption technique. The molecular sieves used in this study are alkali exchanged zeolite X, AlPO4-11, AlPO4-5, VPI-5, KL, CaA, ZSM-5, and ZSM-11. Little relation is observed between the transition pressure for microporous nitrogen adsorption and pore size. Small changes in the effective pore size resulting from variations in cation size are detected in the transition pressure for argon adsorption. Large shifts in the transition pressure for argon adsorption are found for the 10-, 12-, and 18-membered ring pores of AlPO4-11, AlPO4-5, and VPI-5, respectively. Argon adsorption combined with neopentane adsorption on microporous materials provides additional information regarding transitions in the isotherm that result from dual pore systems and effects that may be due to adsorbate packing. The step in the nitrogen isotherm atP/P 0> 0.1 from ZSM-5 is not observed in the nitrogen isotherm from ZSM-11.  相似文献   

16.
Aluminium phosphate (AlPO4) was characterized using X-ray diffractometry (XRD), Fourier Transform infrared (FTIR), point of zero charge (PZC) and dissolution studies. XRD showed the sample to be amorphous, FTIR confirmed the presence of OH groups on the surface and PZC was determined at pH 3.45. The dissolution study illustrated a decrease in dissolution with an increase in the pH. Potentiometric titration data were fit to the Gaines–Thomas equation, which showed that AlPO4 is a weakly acidic ion exchanger. Sorption studies were carried out at pH 4–6 and temperatures 293–323 K. The uptake of metal ions was observed to increase with an increase in the pH and temperature. The surface selectivity towards metal ions was found in the order Pb2+> Cu2+> Cd2+. Sorption data were fit to the new equation derived from the proposed mechanism for metal ion uptake. Various parameters such as stoichiometry of the surface H+ ion release, equilibrium constant, standard enthalpy, entropy and free energy changes were evaluated from the plots. The values of all these parameters were found to be closely related to the values reported in the literature.  相似文献   

17.
In the family of microporous aluminophosphate, AlPO4-9 is one of the members reported first in 1982. However, its structure and characteristics have not been known up to now, and this makes it a special member. In the present work, AlPO4-9 has been synthesized using piperazine as the structure-directing agent and the mixture of H2O and EG as the solvent. Structure refinement from single crystal X-ray diffraction data shows that AlPO4-9 is a material with the composition of C2H7Al5.50NO25P6. It crystallizes in the monoclinic space group C2/c (No: 15), with a = 24.230(5) Å, b = 14.026(5) Å and c = 16.197(3) Å, β = 119.87(4)°, V = 4773(2) Å3, Z = 8. The open-framework of AlPO4-9 is built of alternating corner-sharing PO4 tetrahedra and AlO4 tetrahedra (AlO6 octahedra) to construct a curved one-dimensional 8-ring channel system running along [1 0 1]. Meanwhile, the strict alternative of PO4 tetrahedra and AlO4 tetrahedra (AlO6 octahedra) results in a negative framework in AlPO4-9. Thermal stability has been determined on a thermal analyzer and by calcination. It reveals that AlPO4-9 framework is thermally stable and has a potential to be a catalytic material.  相似文献   

18.
Cyclization of cyclopentanone, formaldehyde and ammonia in vapor phase gives 1,2,3,5,6,7-hexahydrodicyclopenta[b,e]pyridine (HHDCP) and spiro[cyclopentane-1,8′-(1′,2′,3′,5′,6′,7′,8′,8′a) octahydrodicyclopenta[b,e]]pyridine (SCOHDCP) over zeolites HY, HZSM-5, Hβ and mesoporous Al-MCM-41 molecular sieves. The preliminary screening of catalysts clearly shows that Al-MCM-41 is more suitable for the vapor phase synthesis of HHDCP. As the NH3-TPD profiles of Al-MCM-41 show wide range distribution of acid sites in the temperature range of 200–600 °C (weak–medium–strong), Al-MCM-41 is further modified with transition metal ions like V(V), Mn(II), Fe(III), Co(III), Cu(II), La(III) and Ce(III) to fine tune the acid sites. Correlation of activity and selectivity of transition metal modified Al-MCM-41 with the NH3-TPD profiles show that though the conversions are high, selectivity of either HHDCP or SCOHDCP is a preference of acid site strength formed on metal ion modification. Interestingly Co2+ ion modification of Al-MCM-41 resulted distinctly into two sets of acid sites with Tmax around 218 °C (weak–medium) and 673 °C (strong). The reaction is studied on Co–Al-MCM-41 by adsorbing pyridine at 300 °C. The typical acidity available on pyridine adsorbed Co–Al-MCM-41 around 300 °C is showing cyclization activity forming only HHDCP indicating that weak–medium acid sites are responsible for the formation of HHDCP. Based on the product distribution plausible reaction mechanism is proposed.  相似文献   

19.
The parameters of the electric field gradient tensor (EFG) created in rare-earth metal (REM) sites of RBa2Cu3O7 lattices (R = Nd, Sm, Gd, Dy, Y, Ho, Er, Tm) by crystal lattice ions have been determined by the method of emission Mössbauer spectroscopy on 67Ga(67Zn) and 155Eu(155Gd) isotopes. The EFG tensor has been calculated for REM sites in the approximation of the point charge model. It was shown that the agreement between the experimental and calculated parameters of the EFG tensor can be achieved if the holes are preferably localized in the chain oxygen sublattice.  相似文献   

20.
The hydrothermal synthesis of AIPO4-5, which is one of the large pore size aluminum phosphate condensates like zeolitic materials, was carried out by using aluminum dross as a raw material. Triethylamine (TEA) was used as a structure directing agent (SDA) for AIPO4-5 synthesis. Various physical properties such as crystal structure, surface texture and specific surface area were investigated for the obtained reaction product.AlPO4-5 can be synthesized from aluminum dross under hydrothermal conditions at 453–473 K for 3 h. AlPO4 salt as a by-product, which is a non-porous material, is formed at the same time. The crystal of the obtained AlPO4-5 is hexagonal as observed by SEM photographs. It is desirable to heat-treat the reaction product at the temperature around 823 K to remove TEA. The crystal structure of AlPO4-5 changes to non-porous aluminum phosphate in case of a heat treatment exceeding 973 K. The specific surface areas of the reaction product before and after heat treatment at 823 K are 18 and 360 m2/g, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号