首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new specimen geometry-the double edge-cracked Brazilian disk and a relevant fracture analysis by weight function method are proposed for the investigation of rock fracture caused by compression-shear loading. Not only can the mixed mode fracture with any ratio of KI /KII be achieved, but also the pure mode n crack extension can be obtained. The combined mode fracture analysis for this geometry shows that diametral compression in the far-field can induce a compression-shear stress state in the singular stress field ahead of crack tips. Experimental investigations conducted on marble specimens show that the pure mode [I crack extension can be obtained when the dimen-sionless crack length a>0. 7 and the inclined crack angle 5°≤ψ≤40°. Normalized mode I and mode II stress intensity factors decrease from -0. 45 and 2. 47 at ψ= 5° to - 1. 65 and 1. 52 at ψ=40°, respectively. The strains at three points of specimen are also measured in order to investigate the influence of stress singularity on initi  相似文献   

2.
Determinationoffracturetoughnesofbritlematerialsisofgreatimportanceinminingandgeologicalenginering.Avarietyofspecimengeomet...  相似文献   

3.
Anti-plane punch-through shear test and anti-plane four-point bending test are used to study the crack initiation and propagation under anti-plane shear (Mode III) loading. The tensile and shear stresses at the crack tip are calcualted by finite element method. The results show that under Mode III loading the maximum principal stress σ1 at crack tip is smaller or a little larger than the maximum shear stress τmax. Since the tensile strength of brittle rock is much lower than its shear strength, σ1 is easy to reach its critical value before τmax reaches its critical value and thus results in Mode I fracture. The fracture trajectory is helicoid and the normal direction of tangential plane with the fractured helicoid is along the predicted direction of the maximum principal stress at the notch tip. It is further proved that Mode I instead of Mode III fracture occurs in brittle rock under Mode III loading. The fracture mode depending on the fracture mechanism must be distinguished from the loading form. Foundation item: Project (50374073) supported by the National Natural Science Foundation of China; project (2002032256) supported by the Postdoctor Science Foundation of China  相似文献   

4.
Anti-symmetric four-point bending specimens with different thickness, without and with guiding grooves, were used to conduct Mode II fracture test and study the effect of specimen thickness on Mode II fracture toughness of rock. Numerical calculations show that the occurrence of Mode II fracture in the specimens without guiding grooves (when the inner and outer loading points are moved close to the notch plane) and with guiding grooves is attributed to a favorable stress condition created for Mode II fracture, i.e. tensile stress at the notch tip is depressed to be lower than the tensile strength or to be compressive stress, and the ratio of shear stress to tensile stress at notch tip is very high. The measured value of Mode II fracture toughness K II C decreases with the increase of the specimen thickness or the net thickness of specimen. This is because a thick specimen promotes a plane strain state and thus results in a relatively small fracture toughness. Foundation item: The National Natural Science Foundation of China (No: 49672164) Biography of the first author: RAO Qiu-hua, doctor of engineering, born in 1965, majoring in rock fracture mechanics.  相似文献   

5.
A new photoelastic method of obtaining mode I stress intensity factor (SIF) is presented. The method considers the influence of far field stress, σ ox , on the value of SIF. The only information needed for K I calculation is the area between isochromatic fringe loops. The method is examined by two kinds of specimen in different load cases. Experimental results show that it is quite simple and of high precision. Project supported by the National Natural Science Foundation of China Synopsis of the first author Chen Feng, associate professor, born in October 1949, worked on experimental fracture mechanics in Sweden from 1990 to 1995 as a visiting scholar. Major research fields include perturbation and weight function method and its application, experimental mechanics, rock fracture mechanmics.  相似文献   

6.
A laboratory experimental program performed on Wuhan sandstones was presented under monotonic loading, partial cyclic loading during loading path and sine wave cyclic loading with different strain rates to compare uniaxial compression strength and elastic properties (elastic modulus and Poisson ratio) under different conditions and influence of pore fluid on them. When the loading strain rates are 10^-5, 10^-4 and 10^-3/s, uniaxial compression strengths of dry sandstones are 82.3, 126.6 and 141.6 MPa, respectively, and that of water saturated sandstones are 70.5, 108.3 and 124.1 MPa, respectively. The above results show that the uniaxial compression strength increases with the increase of strain rate, however, variation of softening coefficient is insignificant. Under monotonic loading condition, tangent modulus increases with an increment of stress (strain) to a maximum value at a certain stress level, beyond which it starts to decline. Under the partial cyclic loading during loading path condition, unloading or reloading modulus is larger than loading modulus, and unloading and reloading moduli are almost constants with respect to stress level, especially unloading modulus. Under the sine wave cyclic loading condition, tangent modulus and Poisson ratio display asymmetric ‘X' shape with various strain, and the average unloading modulus is larger than the average loading modulus.  相似文献   

7.
Ti/Al2O3 composite with improved mechanical properties was synthesized by the spark plasma sintering. The effect of Nb on the microstructure of the composite was analyzed by TEM, SEM and so on. The experimental results indicate that the bending strength, fracture toughness, micro-hardness and relative density of the composite are 897.29MPa, 17.38MPa·m1/2, 17.13GPa and 99.24% respectively when adding 1.5vol Nb. The bending strength is improved by reason of forming dislocation ring and transfering fracture mode from integranular to mixture fracture of intergranular and transgranular. The crack propagating is mainly the deflection bridging. It indicates a reduction of crack driving force and an increase in crack growth resistance, which results in toughness enhanced. Funded by the National Natural Science Foundation of China (No. 50232020) and the Natural Science Foundation of Shandong Province (No. 2002F21)  相似文献   

8.
Asurveyoffracturemechanicsliteraturere vealsthatresearchworkonrockfracturemechan icshasmainlyfocusedonModeⅠfracture (open ingmode) ,inparticular,onModeⅠfracturetoughnesstesting[1 2 ] .However,pre existingcracksinrockmaterialsordiscontinuitiesinrockmassesarese…  相似文献   

9.
Sincethecenter crackedcirculardiskspeci mencanbeavailabledirectlyfromrockcore ,andmixed modefracturerangingfrompuremodeⅠtoanyKⅡ/KⅠ ratiocanbeeasilyachievedusingthisgeometry ,itiswidelyusedinthemixed modefractureinvestigationofbrittlematerials .Theproblemco…  相似文献   

10.
Variousmode-Ⅰinvestigationsinthetheoryoflinearelasticfracturemechanicsareimportantindeterminingthefractureconstants.Toanalyse...  相似文献   

11.
A bistatic range-velocity-acceleration ambiguity function (BRVAAF) is proposed. The model of radar measurements of an accelerating target involving the time delay, Doppler frequency and Doppler rate is given. The relationships between these measurements and the parameters of the bistatic geometry, target position, velocity and acceleration are derived. Moreover, the effects of the bistatic geometry factors on these measurements are analyzed. Besides, the two relationships of the bistatic integration loss and the bistatic optimum integration time with these factors are built and their change trends are described respectively. This research is helpful to analyze the influences of the bistatic geometry factors on the target detection and signal processing. Supported by the National Natural Science Foundation of China (Grant No. 60232010), the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 60625104) and the Advanced Research Project (Grant Nos. 51307060504, 9140A07040806BQ01)  相似文献   

12.
Strain rate effects on the stress—strain behavior of sand were investigated by performing special plane strain and triaxial compression tests on saturated and air-dried sand specimens. In these tests, the loading strain rate was changed many times by a factor of up to 1 000 during otherwise monotonous loading at a constant axial strain rate. Test results show that the stress jump upon a stepwise change in the strain rate decays with an increase in the irreversible strain when monotonous loading continues at the changed strain rate and the amount of stress jump is essentially proportional to the instantaneous stress. Based on the amount of these stress jumps, a parameter β called the rate-sensitivity coefficient is introduced to represent the quantity of the observed viscous properties of sand, which equals 0.021 3 and 0.024 2 respectively for Hostun and Toyoura sands. Further analyses on the results indicate that the effect of the presence of pore water is deemed to be negligible with sand and the β value is rather independent of loading method, wet condition and confining pressure. Foundation item: Project(50679056) supported by the National Natural Science Foundation of China; Project(06-0378) supported by Program for New Century Excellent Talents in University; Project(05SG25) supported by the “Dawn” Program of Shanghai Education Commission, China; Project(B308) supported by the Shanghai Leading Academic Discipline, China  相似文献   

13.
沥青路面通常在表面裂纹和基础裂纹共存状况下服务。基于断裂力学理论,采用无网格伽辽金/有限元耦合法,对同时含有面层表面裂纹和基层底面裂纹的沥青路面进行了断裂分析,研究了行车荷载行驶过程中裂纹尖端应力强度因子的变化规律。结果显示,在车轮荷载行驶通过基层底面裂纹上方的过程中,基层底面裂纹的复合型应力强度因子K*存在一个最大极值,且这个最大值不是出现在车轮荷载位于基层正上方的时候;表面裂纹的应力强度因子K1和K2随着交通荷载驶近表面裂纹而逐渐增大,而且增大的速率也逐渐上升;相对于基层底面裂纹,表面裂纹受荷载位置影响更显著。  相似文献   

14.
Estimation of compaction grouting pressure in strain softening soils   总被引:3,自引:2,他引:1  
A new method was proposed to predict the limited compaction grouting pressure for the soft soils. Theoretical basis of the method considered the conical shear failure above the grout bulb. Using the Mohr-Coulomb yield criterion as the initial yield function, the limited compaction grouting pressure was determined, according to the softening elastic-plastic model based on the conventional triaxial compression tests to simulate the strain softening soils. The small strain in the elastic zone and large stain in the plastic zone and the rational yield function for the strain softening phase stage, the analytical solutions to the compaction grouting pressure were presented. The results indicate reasonable agreement and show a good potential of the proposed method for rationally optimizing the design of compaction grouting operations. Foundation item: Project (200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China; Project (09JJ1008) supported by Hunan Provincial Natural Science Foundation of China  相似文献   

15.
压剪共同作用下裂纹是地下岩体中广泛存在的,为了研究法向压缩载荷对剪切型即II型裂纹扩展的影响规律,利用砂岩制作了单边裂纹试件,通过岩石剪切实验系统对不同法向压缩载荷作用下的裂纹进行了剪切实验研究,结果表明法向压缩载荷对裂纹的起裂及扩展起到抑制作用,随着裂纹法线压缩载荷的增大,裂纹起裂角逐渐减小;同时,得出法向压缩载荷与II型裂纹极限应力强度因子之间的关系,随着法向压缩载荷增大,岩石II型裂纹极限应力强度因子也随之增大。运用ABAQUS模拟软件,对不同压缩载荷作用下压剪裂纹的扩展进行模拟研究,得出了裂纹尖端II型应力强度因子随压缩载荷的变化规律。  相似文献   

16.
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration, an algorithm QCDSS (QoS constraints of dynamic Web services selection) to resolve dynamic Web services selection with QoS global optimal path, was proposed. The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints. The operations of the cross and mutation in genetic algorithm were brought into PSOA (particle swarm optimization algorithm), forming an improved algorithm (IPSOA) to solve the QoS global optimal problem. Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms. Foundation item: Project(70631004) supported by the Key Project of the National Natural Science Foundation of China; Project(20080440988) supported by the Postdoctoral Science Foundation of China; Project(09JJ4030) supported by the Natural Science Foundation of Hunan Province, China; Project supported by the Postdoctoral Science Foundation of Central South University, China  相似文献   

17.
The tensile and flexural properties of polyvinyl alcohol (PVA) fiber reinforced ultra high toughness cementitious composite (UHTCC) were investigated. The composite, tested at the age of 14 d, 28 d and 56 d, shows extremely remarkable pseudo strain hardening behavior, saturated multiple cracking and ultra high ultimate strain capacity above 4% under uniaxial loading. Also, the corresponding crack widths are controlled under 50 μm even at 56 days age. In the third point bending tests on thin plate specimens, the composite shows ultra high flexural ductility and multiple cracking on the tension surface. The high ultimate flexural strength/first tensile strength ratio of about 5 verifies the pseudo strain hardening behavior of UHTCC. SEM observation on fracture surfaces provides indirect evidence of optimal design for the composite. Funded by the Hong Kong Research Grant Council(CERG UST6138/04E), the Key Program of National Natural Science Foundation of China(No.50438010) and the Research & Application of Key Technology for the South-North Water Transfer Project Construction in China(JGZXJJ2006-13)  相似文献   

18.
The issue of reducing energy consumption for the job-shop scheduling problem in machining systems is addressed, whose dual objectives are to minimize both the energy consumption and the makespan. First, the biobjective model for the job-shop scheduling problem is proposed. The objective function value of the model represents synthesized optimization of energy consumption and makespan. Then, a heuristic algorithm is developed to locate the optimal or near optimal solutions of the model based on the Tabu search mechanism. Finally, the experimental case is presented to demonstrate the effectiveness of the proposed model and the algorithm. Foundation item: Project (50475062) supported by the National Natural Science Foundation of China; project (2004-47-19) supported by the Natural Science Foundation of Chongqing City of China  相似文献   

19.
In order to determine the slip plane of slope directly by the calculation results of strength reduction method, and analyze the influential factors of slope stability, a numerical model was established in plane strain mode by FLAC3D for homogeneous soil slope, whose parameters were reduced until the slope reached the critical state. Then FISH program was used to get the location data of slip plane from displacement contour lines. Furthermore, the method to determine multiple slip planes was also proposed by setting different heights of elastic areas. The influential factors for the stability were analyzed, including cohesion, internal friction angle, and tensile strength. The calculation results show that with the increase of cohesion, failure mode of slope changes from shallow slipping to the deep slipping, while inclination of slip plane becomes slower and slipping volume becomes larger; with the increase of friction angle, failure mode of slope changes from deep slipping to shallow slipping, while slip plane becomes steeper and upper border of slip plane comes closer to the vertex of slope; the safety factor increases little and slip plane goes far away from vertex of slope with the increase of tensile strength. Foundation item: Project(20060533071) supported by the Doctoral Program Foundation of Higher Education of China; Project (20060400264) supported by China Postdoctoral Science Foundation; Project (50774093) supported by the National Natural Science Foundation of China; Project (1343-74236000014) supported by Graduate Student Innovation Foundation of Hunan Province, China  相似文献   

20.
Molecular dynamics (MD) simulations were performed to do the test of sin-gle-walled carbon nanotubes (SWCNT) under tensile loading with the use of Bren-ner potential to describe the interactions of atoms in SWCNTs. The Young’s modulus and tensile strength for SWCNTs were calculated and the values found are 4.2 TPa and 1.40―1.77 TPa, respectively. During the simulation, it was found that if the SWCNTs are unloaded prior to the maximum stress, the stress-strain curve for unloading process overlaps with the loading one, showing that the SWCNT’s de-formation up to its fracture point is completely elastic. The MD simulation also demonstrates the fracture process for several types of SWCNT and the breaking mechanisms for SWCNTs were analyzed based on the energy and structure be-havior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号