首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用Moldflow对Taguchi法和L16(45)正交表所设计出的聚丙烯(PP)薄壁制品注塑方案进行仿真,研究发现:注射时间、保压时间、保压压力是影响PP薄壁制品翘曲变形的主要因素,并且得到最优注塑参数为:注塑机料筒温度180℃,模具温度75℃,注射时间3.0 s,保压时间3.5 s,保压压力65 MPa。另外,通过CAE模流分析软件中PP薄壁制品注塑加工的翘曲变形进行仿真发现,正交试验所获得的优化工艺的总翘曲变形量为1.417 mm,翘曲变形百分比约为3.30%。其中由于冷却引起的翘曲变形量约为0.159 mm,而由收缩和取向引起的翘曲变形分别约为1.853 mm和0.904 mm。  相似文献   

2.
以薄壁壳体为研究对象,基于Moldflow软件对薄壁特征翘曲变形进行正交试验仿真分析,对比实验方案及优化方案,并进行试验验证。结果表明:通过正交试验的优化分析,对翘曲变形显著性影响因素依次为保压压力,模具温度,熔体温度,保压时间,注射时间。优化工艺参数组合为模具温度80℃,熔体温度230℃,注射时间1 s,保压时间8 s,保压压力140%,基于优化数据的试制样件质量较高,对于相关注塑模具的设计制造具有指导和应用意义。  相似文献   

3.
采用正交试验方法,利用Moldflow分析软件对汽车车门内饰板进行注塑成型模拟,分析了熔体温度、模具温度、注射时间、保压压力和保压时间等对注塑件翘曲变形的影响,找出了可以降低车门内饰板翘曲变形量的最佳工艺参数,并通过实际生产验证了所选工艺参数的正确性。当模具温度为35℃、保压时间为18 s、保压压力为60MPa、熔体温度为220℃、注射时间为7 s时,车门内饰板的翘曲变形量最小,Moldflow软件模拟出的最小值为8.33 mm;而采用优选工艺参数进行实际注塑得到的车门内饰板翘曲变形量为8.85 mm,与模拟结果基本吻合。  相似文献   

4.
以空调转接头塑料制品为例,结合正交实验,以翘曲量为评价指标,研究模具温度、熔体温度、保压压力、保压时间等注塑工艺参数对制品翘曲变形的影响,运用极差法对正交实验结果进行分析,得到各工艺参数对翘曲变形影响的主次程度,最终获得最优工艺参数组合,即模具温度60℃,熔体温度240℃,保压压力35 MPa,保压时间15 s,在此工艺组合下的翘曲量为0.092 1 mm。  相似文献   

5.
为了降低翘曲变形对壁厚塑件质量的影响,利用注塑仿真对塑件进行模拟,并结合正交试验的直观分析和方差分析方法对注塑工艺参数进行优化。结果表明,当模具温度70℃、熔体温度220℃、保压压力为注射压力的120%、冷却时间15s、保压时间30s及注射时间4s时,塑件翘曲量最小,熔体温度对塑件翘曲影响最大,模具温度对翘曲影响最小。  相似文献   

6.
基于正交试验设计了4因素4水平实验方案,以翘曲变形量为评价指标,研究了模具温度、注塑温度、保压时间和保压压力对汽车翼子板翘曲变形量的影响。结果表明:基于均值和极差值的比较,对翘曲变形量的影响由大到小依次为注塑温度、保压压力、保压时间、模具温度。最佳成型工艺组合为模具温度55℃,注塑温度230℃,保压时间15 s,保压压力95 MPa,此条件下获得的翼子板翘曲变形量为3.967 mm。  相似文献   

7.
刘长华  孙国栋 《塑料》2013,(5):103-105
利用Moldflow软件,模拟了双分流道浇注系统下手机后盖零件的翘曲变形。同时,利用六因素三水平正交方法对翘曲变形量进行了分析和优化。结果表明:熔体温度对翘曲变形量影响较大,其次是最大注塑压力、保压方式和注射时间,模具表面温度和冷却时间对翘曲变形影响较小。通过工艺参数的组合,得到最佳的注塑工艺:模具表面温度为40℃,熔体温度为240℃,注射时间为2 s,最大注射压力150 MPa,冷却时间20 s,保压方式为三段保压。在此工艺下进行,得到的翘曲变形量为0.1238 mm,相对于优化前的变形量0.1814 mm,降低了31.8%。  相似文献   

8.
针对使用丙烯腈-丁二烯-苯乙烯共聚物/聚碳酸酯共混物制备的轿车车门内饰板在注塑成型过程中容易出现翘曲变形量过大的问题,采用正交试验方法,利用Autodesk Moldflow软件对内饰板进行注塑成型模拟,分析了塑化温度、模具温度、保压压力和保压时间等对内饰板翘曲变形的影响机理和规律,并确定了内饰板的最佳工艺参数。结果表明:注塑的最佳工艺参数是塑化温度为220 ℃,模具温度为80 ℃,保压压力为60 MPa,保压时间为35 s。采用最佳工艺参数进行注塑成型验证,发现车门内饰板的翘曲变形量显著下降,翘曲变形量平均值从14.56 mm降至8.02 mm。  相似文献   

9.
运用正交试验,通过Moldflow模拟分析,将模拟分析样条与实际注塑成型微样条进行对比,研究了模具温度、熔体温度、保压时间、保压压力、注射压力工艺参数对注射成型制品翘曲变形的影响。通过微型样条模具进行成型实验,用三坐标测量仪对成型制品的翘曲变形进行了测量。结果表明,保压压力和熔体温度对样条翘曲变形的影响较大,实际注塑成型样条的翘曲变形量比模拟分析的翘曲变形量大,拉伸样条模拟数值与实际的平均差值为0. 205 mm,实际值比模拟值增大了约50%;冲击样条的模拟数值与实际数值的平均差值为0. 240 5 mm。  相似文献   

10.
《塑料科技》2016,(3):70-75
以某一塑料杯为研究对象,采用正交试验法设计试验方案,使用Moldflow对其进行翘曲模拟分析。以熔体温度、模具温度、注射时间、保压时间、保压压力为试验因素,分析其对翘曲变形量的影响规律,旨在获取最小翘曲变形量,找到最优的工艺参数组合,再次模拟验证得到翘曲变形量为0.066 0 mm。通过分析,有效减小翘曲变形,并且发现5因素对翘曲变形影响程度为:保压时间熔体温度模具温度注射时间保压压力,进而提高了制品的尺寸精度和使用性能,为实际注塑工艺参数的设置提供了正确理论指导。  相似文献   

11.
以正交试验设计为手段,借助有限元分析平台Moldflow,对某瓶盖注塑成型工艺进行数值模拟。通过分析塑件的工艺性,创建了产品的有限元模型,以最小翘曲变形量为试验指标,分析熔体温度、注射时间、模具温度、保压压力和保压时间对产品质量的影响规律。结果表明:当熔体温度为220℃、模具温度为100℃、注射时间为1.10 s、保压压力为100 MPa、保压时间为7.5 s时,所得产品的翘曲变形量最小,为0.369 9 mm,比初始模拟结果降低了34.77%,为实际注塑成型参数的设置提供了科学的理论指导。  相似文献   

12.
对汽车轮眉的注塑成型过程进行了模拟分析。首先通过有限元软件ANSYS对轮眉进行载荷分析,得到轮眉的应力分布图和形变分布图。然后利用Moldfl ow软件模拟轮眉的注塑成型过程,设计了两种注塑成型方案,分别进行流变、冷却和翘曲模拟,分析轮眉的填充、保压、收缩和变形等情况,选择最优的注塑成型方案。再采用正交试验法分析影响轮眉翘曲变形的因素,寻找可使轮眉翘曲变形量最小的最优参数组合。结果表明:轮眉应力集中的位置在外表面拐角处;最优的注塑成型方案为单浇口浇注;各因素对翘曲变形的影响程度为保压时间保压压力熔体温度模具温度注射时间;最优工艺参数组合为熔体温度250℃、模具温度40℃、注射时间2.5 s、保压时间10 s、保压压力90 MPa。最优工艺条件下,轮眉的最大翘曲量可降至0.774 mm。  相似文献   

13.
高蓉菲  刘泓滨 《塑料工业》2020,48(2):79-81,91
以聚丙烯(PP)饭盒盖为研究对象,针对其在注塑过程中存在的质量缺陷问题,以翘曲变形量为优化目标,熔体温度、模具温度、保压时间、冷却时间为影响因子设计了4因素5水平的正交试验。用Moldflow软件进行仿真,对试验结果采用极差分析法,获得了使翘曲变形量最小的各因素水平,进而获得最佳工艺参数组合。其中熔体温度为275℃,模具温度为80℃,保压时间为12 s,冷却时间为45 s,优化后翘曲变形量为1. 699 mm。最佳工艺参数组合有效降低了翘曲变形量,并且发现各因素对塑件质量的影响程度为熔体温度>冷却时间>保压时间>模具温度,为实际生产提供了理论指导。  相似文献   

14.
针对某异型出风罩注塑成型工艺,以聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物(PC/ABS)工程塑料合金为填料,运用Moldflow软件对其注塑过程进行模流分析,通过田口实验设计研究了熔体温度、保压时间、保压压力、注射时间和模具温度对塑件收缩率和翘曲变形量的影响,得到它们对塑件收缩率的影响次序为:保压时间>熔体温度>保压压力>注射时间>模具温度,对翘曲变形量的影响次序为:保压压力>注射时间>熔体温度>保压时间>模具温度。基于灰色关联分析,获得了最优组合工艺参数,即:熔体温度280℃、模具温度为65℃、注塑时间2.1 s、保压时间11 s、保压压力21 MPa。优化后的仿真结果表明,塑件的体积收缩率为6.523%、翘曲变形量为0.80 mm,比灰色关联次序中位组合的样本数据分别降低6.9%和15.8%,并获得最大注射压力为20.34 MPa、最大锁模力为3.25×10^5 N,为后期模具的设计和注塑参数设定提供了有力的参考,缩短了模具开发周期。  相似文献   

15.
以某厂汽车前灯为研究对象,采用正交试验法设计试验方案,使用Moldflow对其进行翘曲模拟分析,以保压压力、保压时间、注射时间、V/P(速度/压力)转换为试验因素,分析其对翘曲变形量的影响规律,旨在获取最小翘曲变形量,找到最优的工艺参数组合,再次模拟验证得到翘曲变形量为1.828 mm,通过分析,优化后的工艺参数组合有效减小了翘曲变形量,并且发现4因素对翘曲变形影响程度为:保压压力保压时间注射时间V/P(速度/压力)转换,进而提高了制品的使用性能,为实际注塑工艺参数的设置提供了正确理论指导。  相似文献   

16.
利用CAE及Moldflow软件对烟雾报警器外壳模型进行浇注系统以及冷却系统的建立,基于正交试验与CAE模拟技术对烟雾报警器外壳模型进行翘曲优化分析,产品的翘曲变形主要由于收缩不均引起,初始翘曲变形量为0.572 0 mm。各工艺参数对翘曲变形量的影响程度最大的为溶体温度,其次为保压压力、保压时间、冷却时间,最小为模具温度。在熔体温度220℃、模具温度60℃、保压压力140 MPa、保压时间10.0 s、冷却时间30 s的工艺参数设置下,产品翘曲变形量为0.183 0 mm,翘曲变形量最小,与初始翘曲变形量相比降低68.01%,产品精度显著提高。  相似文献   

17.
在Moldflow模拟分析的基础上,通过正交试验研究了熔体温度、模具温度、注射时间、保压压力、保压时闻和冷却时间等工艺参数对带金属嵌件的手机外壳注塑成型翘曲变形的影响,并优化了成型工艺.结果表明,保压时间和保压压力对翘曲变形的影响最大,最佳工艺组合为:熔体温度310℃,模具温度120℃,注射时间0.3 s,保压压力14...  相似文献   

18.
《塑料科技》2019,(11):96-99
为解决汽车后视镜外壳的注塑翘曲缺陷问题,利用Moldflow对正交试验16组参数水平组合的成型过程进行模拟,得到各因素对翘曲变形量的影响程度,然后采用BP神经网络预测的方法得到最佳工艺参数组合为:模具温度70℃、熔体温度210℃、注射时间1.4 s、保压时间16 s及保压压力100 MPa。  相似文献   

19.
以某一高压固定板为研究对象,把五大因素(模具温度、熔体温度、填充时间、保压压力、保压时间)作为优化目标,制品的体积收缩率和翘曲变形作为研究目标,设计正交试验并通过Moldflow软件模拟仿真,然后对试验数据结果进行极差和方差分析,最终得到的最佳工艺参数组合为:模具温度70℃,熔体温度280℃,填充时间1 s,保压压力为注射压力的90%,保压时间12 s。再次进行Moldflow软件模拟,得到制品的体积收缩率和最大翘曲变形分别为4.824%和0.632 mm,有效地提高了制品的成型质量,对于实际应用生产具有理论指导意义。  相似文献   

20.
以某汽车B柱外饰板塑件[由聚甲基丙烯酸甲酯(PMMA)/丙烯腈-丁二烯-苯乙烯塑料(ABS)两种材料组成]为研究对象,以厚度比、熔体温度、保压压力、保压时间为影响因素,结合拟水平法进行Taguchi正交试验设计,基于Moldflow软件进行模拟仿真,并对试验数据进行极差、方差分析处理,最后得出最佳的双色注塑工艺组合方案。结果表明,厚度比是影响塑件翘曲变形量的最为重要的因素,其次是保压时间、保压压力,最后是熔体温度。在总厚度不变的情况下,改变PMMA/ABS的厚度比值,塑件所产生的翘曲变形量将发生改变,第一次注射的厚度越薄,所产生的翘曲变形量越大,当厚度比越趋近于1时,所产生的翘曲变形量越小。最佳工艺组合为:厚度比0.96∶1,内层(ABS层)成型阶段熔体温度240℃、保压压力80 MPa以及保压时间6 s,外层(PMMA层)成型阶段熔体温度260℃、保压压力50 MPa以及保压时间6 s。优化后得到的总翘曲量为1.435 mm,相比优化前翘曲量降低了69.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号