首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
超细Pd/Al_2O_3催化剂及其对乙炔选择加氢催化性能研究   总被引:3,自引:0,他引:3  
用超临界干燥方法制备超细Pd/Al2O3催化剂,研究了制备方法、表面物性、活性组分的化学态及乙炔选择加氢反应催化活性。表明超细Al2O3担体为短纤维状,Pd/Al2O3催化剂的结构特征是高比表面、大孔径和低表面酸性。Pd与担体有强相互作用,呈Pd4+态。与工业催化剂(C31-A)相比它具有更高的乙炔加氢催化活性和选择性  相似文献   

2.
钯单膦配体络合物催化氯苄双羰基化反应研究   总被引:2,自引:0,他引:2  
利用4种新型单膦配体与钯形成的络合物作为均相催化剂,研究了氯苄双羰基化生成苯基丙酮酸甲酯的催化反应;考察了反应温度、CO压力和Pd/PhCH2Cl(mol比,下同)的影响。结果表明,当反应温度为100℃,CO压力为6.0MPa,Pd/PhCH2Cl为0.8时,络合物(Ⅰ)作为氯苄双羰基化反应的均相催化剂,生成苯基丙酮酸甲酯的产率和选择性分别可达95%和93%。  相似文献   

3.
合成气直接制取二甲醚催化剂的制备因素及其应用   总被引:5,自引:2,他引:3  
研究了CuO/ZnO/Al2O3和CuO-ZnO-Al2O3/HZSM-5催化剂的制备方法及合成反应条件对合成气直接制取二甲醚反应的影响。结果表明,采用共沉淀沉积法制备催化剂,350°C下焙烧,230~240°C下还原CuO/ZnO/Al2O3催化剂的活性最高。CuO-ZnO-Al2O3/HZSM-5催化剂上合成反应的适宜条件:温度270~300°C,压力4.0MPa,空速1500h-1,H2CO=2~2.8(mol比),原料气中CO2的浓度为5%(v)。  相似文献   

4.
甲烷氧化偶联制乙烯高选择性催化剂的研究   总被引:1,自引:0,他引:1  
制备了甲烷氧化偶联制乙烯高选择性催化剂,考察了MgO-BaO、SrCO3-BaO、La2O3-BaO体系催化剂的活性和选择性及CH4/O2、反应温度和空速对催化剂性能的影响。实验表明在反应条件为:CH4/O2=7.8~8.0、反应温度800~820℃、CH4空速为500~1000h^-1的范围内,La2O3~BaO体系催化剂的CH4转化率在18%~20%,C2的选择性能保持在80%以上,用XRD、  相似文献   

5.
Pd(CH3CN)2Cl2和等当量的邻--(二苯基膦苯甲醛)[Ph2P(0-C6H4CHO),简称PCHO],在回流的二氯甲烷中反应,通过分子间消去HCl,生成了一个新的双氯桥双核钯配合物{[Ph2P(0-C6H4CO)PdCl]2,简写为Pd2Cl2(PCHO)2}。进行了该配合物的元素分析,红外光谱表征和结构分析。在反应温度30~80℃,氢压1.0~5.0MPa的范围内,考察了该配合物的催化氢化性能。结果表明,它们是催化α,β不饱和酸和苯乙烯氢化的有效催化剂,且可以循环使用。  相似文献   

6.
CH_4/CO_2重整制合成气Co催化剂上积炭的XPS/AES、TEM和XRD表征   总被引:1,自引:1,他引:0  
用XPS/AES、TEM和XRD技术对CH4/CO2重整制合成气负载型Co金属催化剂表面积炭的组成和形貌进行了表征。通过对不同气体处理的16.0%(mas)Co/γ-Al2O3催化剂表面积炭进行XPS/AES组成分析发现,金属碳化物碳(B.E.282.5eV)是重整反应中与CO2作用生成CO的活性碳物种。这种活性金属碳化物碳还可进一步转化为惰性的丝状碳和石墨碳。TEM和XRD分析结果表明,催化剂上生成丝状碳数量顺序为:16%Co/γ-Al2O3>>9%Co/γ-Al2O3~9%Co-Ca/γ-Al2O3(m(Ca)∶m(Al)=1∶1)。这与相应催化剂上Co微晶晶粒尺寸大小顺序(30nm>15nm>9nm)有一定的对应关系。作者认为,通过提高金属Co微晶在催化剂表面的分散度和稳定性,可以有效地抑制丝状碳的生成。  相似文献   

7.
用非传统方法制备了Rh2Co2/Al2O3、Co2/Al2O3、Rh4/Al2O3和用传统方法制备了(Rh+Co)/Al2O3催化剂。用连续流动微反装置研究了上述催化剂的CO加氢活性及选择性,并系统地研究了H2/CO比值和温度对反应活性及选择性的影响。结果表明,Rh2Co2/Al2O3的活性不仅高于Rh4/Al2O3和Co2/Al2O3,而且也高于(Rh+Co)/Al2O3,在选择性方面与上述样品也有明显差异。当H2/CO比值从6:1变到1:1时,其它催化剂的反应活性大为降低,而Rh2Co2/Al2O3仍保持高活性。  相似文献   

8.
C5/C6烷烃低温异构化催化剂及工艺研究   总被引:6,自引:0,他引:6  
以AlCl3和CCl4为氯化剂,制备了Pt-Cl/Al2O3型C5/C6烷烃低温异构化催化剂,考察了补氯条件对催化剂异构化活性和选择性的影响,结果表明,以正己烷为原料,在氢压2.0MPa,进料质量空速1.0h-1,反应温度140℃,氢油摩尔比1~2条件下,2,2-二甲基丁烷选择性30%;n-C6转化率90%,经微反装置300h运转,催化剂活性未见下降,达到了国外同类催化剂水平  相似文献   

9.
碳四馏份选择加氢除炔烃   总被引:3,自引:1,他引:2  
在模试评价装置上研究了工艺条件、催化剂活性成份对碳四馏份选择加氢除炔烃的影响。结果表明,Pd-Pb/Al2O3催化剂在一定工艺条件下可以将碳四馏份中的乙基乙炔和乙烯基乙炔分别除至1.0×10-5以下,并且保证丁二烯损失小于3%。  相似文献   

10.
用新研制的具有高抗结炭性能的负载型镍催化剂SYM-1,模拟工业用变温固定床,进行了CH4-H2O-CO2体系制取合成甲醇用合成气的实验。结果表明,该催化剂对CH4-H2O-CO2反应具有良好的催化活性,能够制得工业合成甲醇用的合成气。甲烷的转化率和产物CO含量随温度升高而增加,随压力增大而下降。其较佳的反应条件为:反应温度900℃;压力0.1~0.7MPa,甲烷空速500~1500h-1;原料配比CH4:H2O:CO2=1:(1.1~1.5):0.3。  相似文献   

11.
以Al2O3为载体,采用特殊的化学镀法制备了Pd负载型碳二馏分选择加氢催化剂。对催化剂表面进行X射线光电子能谱和扫描电子显微镜表征显示,活性组分Pd在催化剂表面以单质形式存在,在碳二馏分加氢反应前无须高温焙烧和还原,且Pd富集分布在催化剂表面壳层的10~20μm之间,与浸渍法制备的Pd负载型催化剂相比,Pd层更薄,有利于提高Pd的利用率。在气态空速15000h-1、氢气与乙炔摩尔比1.5、反应温度130℃的条件下,以碳二馏分选择加氢反应考察了催化剂的性能,评价结果表明,以化学镀法制备的HXD10催化剂的性能大大优于浸渍法制备的SAM20催化剂(两种催化剂中Pd质量分数均为0.035%),HXD催化剂上乙炔转化率和乙烯选择性分别达到91%和83%。  相似文献   

12.
采用混捏-浸渍法制备具有相同载Pd量的Pd/Al2O3和Pd/Ni/Al2O3催化剂,并对制得的催化剂进行XRD,BET,NH3-TPD表征。在固定床连续微反装置上,对制得的催化剂进行重整重芳烃油选择性加氢反应催化性能评价。结果表明,Pd/Ni/Al2O3催化剂具有γ-Al2O3物相、适宜的比表面积与孔径分布以及较小的酸量,对重整重芳烃油中烯烃选择性加氢具有较好的反应性能和稳定性,适宜的反应条件为:温度80 ℃,压力5 MPa,空速2 h-1,氢油体积比500。  相似文献   

13.
以氯化钯为前驱体,活性氧化铝为载体,采用等体积浸渍法制备蒽醌加氢流化床Pd/Al2 O3催化剂,系统考察了浸渍条件、焙烧条件、还原条件对催化剂表面性质和加氢性能的影响.结果表明,浸渍液pH值和焙烧温度是影响Pd分散度和催化剂活性的主要因素.优化的催化剂制备条件为:浸渍液pH值3.0~4.0,浸渍时间0.5 h,干燥温度...  相似文献   

14.
乙炔在磁稳定床中的选择性加氢研究   总被引:1,自引:0,他引:1  
 制备了一种磁性Pd/Al2O3催化剂,采用磁稳定床考察了活性组分负载量、反应条件及CO浓度对乙炔加氢反应性能的影响。结果表明,当反应温度80℃、反应压力1.5MPa、空速9000h-1、磁场强度(H)25kA/m时,乙炔转化率为100%,乙烯选择性可达81%,具有优良的乙炔加氢活性和乙烯选择性,优于相同反应条件下的进口催化剂;250h稳定性实验结果表明,磁性Pd/Al2O3催化剂具有良好的初活性和乙烯选择性,催化剂性能稳定。  相似文献   

15.
常压下碳纳米管负载钯催化剂上肉桂醛选择性加氢   总被引:1,自引:0,他引:1  
以Pd(NH3)4Cl2为Pd前体,采用传统的渍浸法制备了Pd/碳纳米管(CNTs)催化剂,并在常压下研究了反应温度、反应时间、溶剂和促进剂(酸、碱、盐等)对肉桂醛液相选择性加氢性能的影响。实验结果表明,在常温、常压下,Pd/CNTs催化剂具有良好的肉桂醛选择性加氢性能,催化活性和苯丙醛的选择性受反应条件、溶剂和促进剂的影响。使用极性溶剂能提高催化剂的活性,但苯丙醛的选择性有所降低。在反应体系中添加适量的弱碱NaOAc或弱酸HOAc均能显著提高Pd/CNTs催化剂的选择性加氢性能。在Pd/CNTs催化剂用量0.36g、肉桂醛用量8.0mmol、无水乙醇用量19.0mL、240min、30℃、常压条件下,当添加0.025~0.050mmol的NaOAc时,肉桂醛的转化率和苯丙醛的选择性分别达到93.3%~94.8%和92.0%~94.9%。  相似文献   

16.
 研究了具有壳层结构的负载型Pd/Al2O3催化剂在裂解汽油选择性加氢过程中活性组分Pd的迁移现象.测定了生产装置所用新鲜催化剂和再生催化剂的比表面积、孔容和其中活性组分Pd含量,采用TEM和SEM-EDS方法表征了Pd的分散性.结果表明, 在裂解汽油选择性加氢的工艺过程中, 具有壳层结构的负载型Pd/Al2O3催化剂的永久性失活和选择性改变的主要原因之一是活性组分Pd的迁移. Pd迁移的基本原因是其在催化剂颗粒中的不均匀分布, 助金属组分可以限制Pd的迁移, 从而改善催化剂的性能.  相似文献   

17.
重整生成油选择性加氢脱烯烃 Pd基催化剂的研究   总被引:1,自引:0,他引:1  
 研究了负载在Al2O3载体上的贵金属钯(Pd)基催化剂在重整生成油选择性加氢脱烯烃反应中的性能。在高压微反装置上,采用环己烯、甲苯和正庚烷的混合物为模拟油来评价筛选催化剂,并对不同工业原料油进行加氢试验。结果表明,在现有工业上常用的工艺条件下,采用Pd/Al2O3催化剂进行重整生成油全馏分的选择性加氢,不能满足产品质量要求。其原因是高沸点馏分强吸附在催化剂表面,从而导致催化剂失活。在适宜的工艺条件下,采用Pd/Al2O3催化剂进行连续重整汽油BTX 馏分选择性加氢脱烯烃,可以使加氢汽油满足芳烃抽提进料的质量要求。添加助剂对Pd/Al2O3催化剂进行改进,可以大大提高催化剂的稳定性。改进后的双金属Pd基催化剂(Pd+M/Al2O3)可用于不同原料的重整生成油(苯(C6)馏分、BTX(C6~C9)馏分、全馏分)的选择性加氢脱烯烃反应。加氢反应产物的溴价小于200mgBr/100g,芳烃损失小于0.5%(质量分数),且在重整生成油全馏分的选择性加氢过程中该催化剂表现出好的稳定性。  相似文献   

18.
丁二烯调聚经甲辛醚制1-辛烯   总被引:2,自引:0,他引:2  
丁二烯与甲醇经调聚反应生成2,7-辛二烯甲醚,加氢精制后得到的甲辛醚在γ-Al2O3催化剂作用下裂解生成1-辛烯。在一定的调聚反应条件下,2,7-辛二烯甲醚的精馏收率不小于88%(纯度不小于99%)。以Pd/C为加氢催化剂,2,7-辛二烯甲醚转化率及甲辛醚选择性均达100%。采用γ-Al2O3对甲辛醚裂解制1-辛烯的过程进行考察,结果表明,催化剂的催化性能除与酸强度有关外,与其结构有密切关系,具有较大的孔径和比表面积的γ-Al2O3催化剂是甲辛醚催化裂解的较佳催化剂,高的催化选择性需要较弱的酸中心和较大的孔径。在甲辛醚进料空速1~3h-1、反应温度280~330℃的条件下,甲辛醚单程转化率94%~96%,1-辛烯选择性87%左右,单程收率83%。  相似文献   

19.
用于一步法合成丙基环己基环己酮的Pd/C催化剂   总被引:1,自引:1,他引:0  
分别采用甲醛还原法和氢气还原法制备了5%Pd/C催化剂(Pd质量分数为5%)。采用X射线衍射、透射电子显微镜、H2化学吸附技术,研究了制备条件(pH、还原温度、前体种类)对5%Pd/C催化剂性能的影响,评价了5%Pd/C催化剂对丙基环己基苯酚一步加氢合成丙基环己基环己酮反应的催化性能,考察了添加K,Sn助剂对5%Pd/C催化剂性能的影响。实验结果表明,氢气还原法得到的Pd/C催化剂分散度高、活性好;K,Sn助剂能明显提高5%Pd/C催化剂的活性和丙基环己基环己酮的选择性,适宜的Sn质量分数为1.5%、K质量分数为10.0%。采用氢气还原法制备的5%Pd-1.5%Sn-10.0%K/C催化剂,以甲苯为溶剂,在反应温度423K、氢气压力0.5M Pa的条件下,丙基环己基环己酮的选择性可达89.1%,丙基环己基苯酚的转化率可达93.1%。  相似文献   

20.
 采用浸渍法以TiO2成型载体制备了Pd/TiO2催化剂。采用BET、XRD、XPS、H2-TPR等手段对所制备的催化剂进行了表征。将不同温度下焙烧的TiO2为载体制备的Pd/TiO2催化剂用于粗对苯二甲酸(CTA)中的主要杂质对羧基苯甲醛(4-CBA)的催化加氢反应,考察了载体焙烧温度对其所制备的催化剂活性的影响。结果表明,随着TiO2成型载体焙烧温度的升高, Pd/TiO2催化剂的比表面积和孔容降低,平均孔径增大。Pd/TiO2催化剂样品XRD谱中未检测到金属Pd的特征衍射峰,同时催化剂中TiO2的晶相始终保持锐钛型结构。Pd/TiO2催化剂表面Pd的比表面积随着载体焙烧温度的升高而降低。载体焙烧温度的高低可改变PdHx物种在其所制备的催化剂表面的数量及其结合状态。当TiO2载体焙烧温度为500℃时,所制备的Pd/TiO2催化剂表面Pd的比表面积最大,催化剂的加氢活性最高,在反应温度280℃、H2分压0.6 MPa、反应时间0.3 h的条件下,4-CBA转化率可达到99.5%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号