共查询到20条相似文献,搜索用时 15 毫秒
1.
Bojan Tamburic Fessehaye W. Zemichael Paul Crudge Geoffrey C. Maitland Klaus Hellgardt 《International Journal of Hydrogen Energy》2011,36(11):6578-6591
Some green microalgae have the ability to harness sunlight to photosynthetically produce molecular hydrogen from water. This renewable, carbon-neutral process has the additional benefit of sequestering carbon dioxide and accumulating biomass during the algal growth phase. We document the details of a novel one-litre vertical flat-plate photobioreactor that has been designed to facilitate green algal hydrogen production at the laboratory scale. Coherent, non-heating illumination is provided by a panel of cool-white light-emitting diodes. The reactor body consists of two compartments constructed from transparent polymethyl methacrylate sheets. The primary compartment holds the algal culture, which is agitated by means of a recirculating gas-lift. The secondary compartment is used to control the temperature of the system and the wavelength of radiation. The reactor is fitted with probe sensors that monitor the pH, dissolved oxygen, temperature and optical thickness of the algal culture. A membrane-inlet mass spectrometry system has been developed and incorporated into the reactor for dissolved hydrogen measurement and collection. The reactor is hydrogen-tight, modular and fully autoclaveable. 相似文献
2.
Meng Ni Michael K.H. LeungK. Sumathy Dennis Y.C. Leung 《International Journal of Hydrogen Energy》2006
Hong Kong is highly vulnerable to energy and economic security due to the heavy dependence on imported fossil fuels. The combustion of fossil fuels also causes serious environmental pollution. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply. Hong Kong has the potential to develop clean renewable hydrogen energy to improve the environmental performance. This paper reviews the recent development of hydrogen production technologies, followed by an overview of the renewable energy sources and a discussion about potential applications for renewable hydrogen production in Hong Kong. The results show that although renewable energy resources cannot entirely satisfy the energy demand in Hong Kong, solar energy, wind power, and biomass are available renewable sources for significant hydrogen production. A system consisting of wind turbines and photovoltaic (PV) panels coupled with electrolyzers is a promising design to produce hydrogen. Biomass, especially organic waste, offers an economical, environmental-friendly way for renewable hydrogen production. The achievable hydrogen energy output would be as much as 40% of the total energy consumption in transportation. 相似文献
3.
Promoting renewable energy in India has assumed great importance in recent years in view of high growth rate of energy consumption, high share of coal in domestic energy demand, heavy dependence on imports for meeting demands for petroleum fuels and volatility of world oil market. A number of renewable energy technologies (RETs) are now well established in the country. The technology that has achieved the most dramatic growth rate and success is wind energy; India ranks fourth in the world in terms of total installed capacity. India hosts the world's largest small gasifier programme and second largest biogas programme. After many years of slow growth, demand for solar water heaters appears to be gaining momentum. Small hydro has been growing in India at a slow but steady pace. Installation of some of the technologies appears to have slowed down in recent years; these include improved cooking stoves (ICSs) and solar photovoltaic (PV) systems. In spite of many successes, the overall growth of renewable energy in India has remained rather slow. A number of factors are likely to boost the future prospects of renewable energy in the country; these include global pressure and voluntary targets for greenhouse gas emission reduction, a possible future oil crisis, intensification of rural electrification program, and import of hydropower from neighbouring countries. 相似文献
4.
《International Journal of Hydrogen Energy》2023,48(25):9139-9154
Green energy commodities are expected to be central in decarbonising the global energy system. Such green energy commodities could be hydrogen or other hydrogen-based energy commodities produced from renewable energy sources (RES) such as solar or wind energy. We quantify the production cost and potentials of hydrogen and hydrogen-based energy commodities ammonia, methane, methanol, gasoline, diesel and kerosene in 113 countries. Moreover, we evaluate total supply costs to Germany, considering both pipeline-based and maritime transport. We determine production costs by optimising the investment and operation of commodity production from dedicated RES based on country-level RES potentials and country-specific weighted average costs of capital. Analysing the geographic distribution of production and supply costs, we find that production costs dominate the supply cost composition for liquid or easily liquefiable commodities, while transport costs dominate for gaseous commodities. In the case of Germany, importing green ammonia could be more cost-efficient than domestic production from locally produced or imported hydrogen. Green ammonia could be supplied to Germany from many regions worldwide at below the cost of domestic production, with costs ranging from 624 to 874 $/t NH3 and Norway being the cheapest supplier. Ammonia production using imported hydrogen from Spain could be cost-effective if a pan-European hydrogen pipeline grid based on repurposed natural gas pipelines exists. 相似文献
5.
《International Journal of Hydrogen Energy》2023,48(74):28803-28823
Rising concerns about the dependence of modern energy systems on fossil fuels have raised the requirement for green alternate fuels to pave the roadmap for a sustainable energy future with a carbon-free economy. Massive expectations of hydrogen as an enabler for decarbonization of the energy sector are limited by the lack of required infrastructure, whose implementation is affected by the issues related to the storage and distribution of hydrogen energy. Ammonia is an effective hydrogen energy carrier with a well-established and mature infrastructure for long-distance transportation and distribution. The possibility for green ammonia production from renewable energy sources has made it a suitable green alternate fuel for the decarbonization of the automotive and power generation sectors. In this work, engine characteristics for ammonia combustion in spark ignition engines have been reported with a detailed note on engines fuelled with pure ammonia as well as blends of ammonia with gasoline, hydrogen, and methane. Higher auto-ignition temperature, low flammability, and lower flame speed of ammonia have a detrimental effect on engine characteristics, and it could be addressed either by incorporating engine modifications or by enhancing the fuel quality. Literature shows that the increase in compression ratio from 9.4:1 to 11.5:1 improved the maximum power by 59% and the addition of 10% hydrogen in supercharged conditions improved the indicated efficiency by 37%. Challenges and strategies for the utilization of ammonia as combustible fuel in engines are discussed by considering the need for technical advancements as well as social acceptance. Energy efficiency for green ammonia production is also discussed with a due note on techniques for direct synthesis of ammonia from air and water. 相似文献
6.
《Renewable & Sustainable Energy Reviews》2008,12(6):1652-1666
Green power products may be seen as a means of fostering renewable energy sources (RES) because they create and channel consumer demand for environmentally sound power generation. Turkey also has a large potential for renewable energy exploitation in a number of areas. Clean, domestic and renewable energy is commonly accepted as the key for future life, not only for Turkey but also for the world. The renewable energy contribution in the total primary energy production is insignificant. The alternative and renewable energy systems have been neglected so far in Turkey but must be included in the new energy programs. In this context, Renewable Energy Law was enacted in 2005 in order to encourage renewable-based generation in competitive market conditions. Supporting mechanisms such as feed-in tariffs and purchase obligation are defined in the law, in conformity with the EU legislation and practice. These mechanisms are envisaged to facilitate the development of power plants based on RES. 相似文献
7.
Helgi Thor Ingason Hjalti Pall Ingolfsson Pall Jensson 《International Journal of Hydrogen Energy》2008
While the world energy demand is steadily growing, the concern for the environmental aspects of energy use and natural resource exploitation has increased. A new market has emerged for renewable energy, often referred to as “green energy”. This paper presents an optimization model developed as part of a feasibility study on the idea of exporting renewable energy in the form of hydrogen, from Iceland to the continent of Europe. 相似文献
8.
《International Journal of Hydrogen Energy》2023,48(12):4551-4571
The article provides a review of the current hydrogen production and the prospects for the development of the production of “green” hydrogen using renewable energy sources in various countries of the world that are leaders in this field. The potential of hydrogen energy in such countries and regions as Australia, the European Union, India, Canada, China, the Russian Federation, United States of America, South Korea, the Republic of South Africa, Japan and the northern countries of Africa is considered. These countries have significant potential for the production of hydrogen and “green” hydrogen, in particular through mining of fossil fuels and the use of renewable energy sources. The quantitative indicators of the production of “green” hydrogen in the future and the direction of its export are considered; the most developed hydrogen technologies in these countries are presented. The production of “green” hydrogen in most countries is the way to transition from the consumption of fossil fuels to the clean energy of the future, which will significantly improve the environmental situation, reduce greenhouse gas emissions and improve the energy independence of the regions. 相似文献
9.
Lena Klaas Dorottya Guban Martin Roeb Christian Sattler 《International Journal of Hydrogen Energy》2021,46(49):25121-25136
Large progress has been made in the last decades to reduce the carbon footprint of ammonia, which is an essential commodity of the food, chemical and energy industry. Apart from alternative routes for green feedstock production, such as hydrogen via electrolysis and nitrogen via solar thermochemical methods, alternatives are explored to replace the Haber-Bosch process. The present article reviews four promising mild condition ammonia production methods: solid state synthesis, molten salt synthesis, thermochemical looping and photocatalytic routes. Contrary to the Haber-Bosch method, which requires high pressures of 200–400 bar, they operate at low-pressures, furthermore such routes open the possibility for direct ammonia production from H2O and N2 without the intermediate hydrogen production step. These advantages allow easier renewable energy integration; however, R&D activities are needed for scaling-up. An analysis is given on renewable energy integration with focus on solar resources both in the form of electricity and heat. 相似文献
10.
The article presents a short review of electricity production from renewable energy sources in Slovenia. In Introduction the term of “green electricity” is defined. Comparison of structures of electricity production is presented for the years 1990 and 2003. The main part of the article presents an approximate data for technical and theoretical potentials of renewable energy sources in Slovenia. State-of-the-art regarding individual technologies of electricity production from renewable energy sources and political targets according to Directive 2001/77/EC for green electricity are also presented. At the end of the article different stimulation models are described and uniform prices and premiums for the purchase of green electrical energy are presented. 相似文献
11.
Ammonia, being a good source of hydrogen, has the potential to play a significant role in a future hydrogen economy. The hydrogen content in liquid ammonia is 17.6 wt% compared with 12.5 wt% in methanol. Although a large percentage of ammonia, produced globally, is currently used in fertiliser production, it has been used as a fuel for transport vehicles and for space heating. Ammonia is an excellent energy storage media with infrastructure for its transportation and distribution already in place in many countries. Ammonia is produced at present through the well known Haber–Bosch process which is known to be very energy and capital intensive. In search for more efficient and economical process and in view of the potential ammonia production growth forecast, a number of new processes are under development. Amongst these, the electrochemical routes have the potential to substantially reduce the energy input (by more than 20%), simplify the reactor design and reduce the complexity and cost of balance of plant when compared to the conventional ammonia production route. Several electrochemical routes based on liquid, molten salt, solid or composite electrolytes consisting of a molten salt and a solid phase are currently under investigation. In this paper these electrochemical methods of ammonia synthesis have been reviewed with a discussion on materials of construction, operating temperature and pressure regimes, major technical challenges and materials issues. 相似文献
12.
We used the TIMER energy model to explore the potential role of hydrogen in the energy systems of India and Western Europe, looking at the impacts on its main incentives: climate policy, energy security and urban air pollution. We found that hydrogen will not play a major role in both regions without considerable cost reductions, mainly in fuel cell technology. Also, energy taxation policy is essential for hydrogen penetration and India's lower energy taxes limit India's capacity to favour hydrogen. Once available to the (European) energy system, hydrogen can decrease the cost of CO2 emission reduction by increasing the potential for carbon capture technology. However, climate policy alone is insufficient to speed up the transition. Hydrogen diversifies energy imports; especially for Europe it decreases oil imports, while increasing imports of coal and natural gas. For India, it provides an opportunity to decrease oil imports and use indigenous coal resources in the transport sector. Hydrogen improves urban air quality by shifting emissions from urban transport to hydrogen production facilities. However, for total net emissions we found a sensitive trade-off between lower emissions at end-use (in transport) and higher emissions from hydrogen production, depending on local policy for hydrogen production facilities. 相似文献
13.
Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production
《International Journal of Hydrogen Energy》2023,48(12):4572-4593
The development of renewable energy technologies is essential to achieve carbon neutrality. Hydrogen can be stably stored and transported in large quantities to maximize power utilization. Detailed understanding of the characteristics and operating methods of water electrolysis technologies, in which naturally intermittent fluctuating power is used directly, is required for green hydrogen production, because fluctuating power-driven water electrolysis processes significantly differ from industrial water electrolysis processes driven by steady grid power. Thus, it is necessary to overcome several issues related to the direct use of fluctuating power. This article reviews the characteristics of fluctuating power and its generation as well as the current status and issues related to the operation conditions, water electrolyzer configuration, system requirements, stack/catalyst durability, and degradation mechanisms under the direct use of fluctuating power sources. It also provides an accelerated degradation test protocol method for fair catalyst performance comparison and share of effective design directions. Finally, it discusses potential challenges and recommendations for further improvements in water electrolyzer components and systems suitable for practical use, suggesting that a breakthrough could be realized toward the achievement of a sustainable hydrogen-based society. 相似文献
14.
In order to evaluate the potential of burning and reforming ammonia as a carbon-free fuel in production of hydrogen, fundamental unstretched laminar burning velocities, and flame response to stretch (represented by the Markstein number) for laminar premixed hydrogen-added ammonia/air flames were studied both experimentally and computationally. Freely (outwardly)-propagating spherical laminar premixed flames at normal temperature and pressure were considered for a wide range of global fuel-equivalence ratios, flame stretch rates (represented by the Karlovitz number) and the extent of hydrogen substitution. Results show the substantial increase of laminar burning velocities with hydrogen substitution, particularly under fuel-rich conditions. Also, predicted flame structures show that the hydrogen substitution enhances nitrogen oxide (NOx) and nitrous oxide (N2O) formation. At fuel-rich conditions, however, the amount of NOx and N2O emissions and the extent of the increase with the hydrogen substitution are much lower than those under fuel-lean conditions. These observations support the potential of hydrogen as an additive for improving the burning performance with low NOx and N2O emissions in fuel-rich ammonia/air flames and hence the potential of using ammonia as a clean fuel. Increasing the amount of added hydrogen tends to enhance flame sensitivity to stretch. 相似文献
15.
Renewable energy represents an area of tremendous opportunity for India. Energy is considered a prime agent in the generation of wealth and a significant factor in economic development. Energy is also essential for improving the quality of life. Development of conventional forms of energy for meeting the growing energy needs of society at a reasonable cost is the responsibility of the Government. Limited fossil resources and associated environmental problems have emphasized the need for new sustainable energy supply options. India depends heavily on coal and oil for meeting its energy demand which contributes to smog, acid rain and greenhouse gases’ emission. Last 25 years has been a period of intense activities related to research, development, production and distribution of energy in India.Though major energy sources for electrical power are coal and natural gas, development and promotion of non-conventional sources of energy such as solar, wind and bio-energy, are also getting sustained attention. The use of electricity has grown since it can be used in variety of applications as well as it can be easily transmitted, the uses of renewable energy like wind and solar is rising. Wind energy is a clean, eco-friendly, renewable resource and is nonpolluting. The gross wind power potential is estimated at around 48,561 MW in the country; a capacity of 14,989.89 MW up to 31st August 2011 has so far been added through wind, which places India in the fifth position globally. This paper discusses the ways in which India has already supported the growth of renewable energy technologies i.e. wind energy and its potential to expand their contribution to world growth in a way that is consistent with world's developmental and environmental goals. The paper presents current status, major achievements and future aspects of wind energy in India. 相似文献
16.
《International Journal of Hydrogen Energy》2023,48(5):1685-1700
In the present paper a techno-economic hydrogen production and transportation costs to export from Colombia to Europe and Asia were determined using the open-source Python tools, such as WindPowerLIB, PVLIB, ERA5 weather data, and the Hydrogen-2-Central (H2C) model. Calculations were performed as well for Chile, for comparison as a regional competitor. In addition, a detailed overview of Colombia's energy system and national efforts for a market ramp-up of renewable energy and hydrogen is provided. The application of the model in different scenarios shows Colombia's potential to produce green hydrogen using renewable energies. The prices estimated are 1.5 and 1.02 USD/kgH2 for 2030 and 2050 with wind power, and 3.24 and 1.65 USD/kgH2 for 2030 and 2050 using solar energy. Colombia can become one of the most promising hydrogen suppliers to Asian and European countries with one of the lowest prices in the production and transportation of green hydrogen. 相似文献
17.
P. Veeraraghavan Ramachandran Ameya S. Kulkarni 《International Journal of Hydrogen Energy》2017,42(2):1451-1455
Ammonia borane (AB) has been synthesized in very high purity (>99%) from sodium borohydride and ammonium sulfate under ambient conditions in tetrahydrofuran (THF) at 1 M concentration using water as the promoter. Less than quantitative yields of AB are obtained due to a competing hydrolysis of the primary metathesis product ammonium borohydride. The solvent THF can be substituted with a greener alternative, 2-methylTHF, with no loss in yield or purity and complete recyclability. 相似文献
18.
Yoshimitsu Uemura Takami Kai Rintarou Natori Takeshige Takahashi Yasuo Hatate Masahiro Yoshida 《Renewable Energy》2004,29(4):581
A study was carried out to see if the potential of renewable energy sources other than hy droelectric power, such as wind, photovoltaic, solar thermal, biomass and waste energy sources, can meet the current energy consumption in Yakushima. The current electricity consumption can be covered by wind and photovoltaic energy sources. The total potential of wind and photovoltaic energy sources is 5.4 times as much as the current electricity consumption. LP gas and kerosene can be replaced by solar thermal and biogas energy. The potential of plant biomass and municipal waste is not sufficient (approximately one third) to cover the rest of the fossil fuels (gasoline, diesel oil and heavy oil). Also, plant biomass and municipal waste must be converted into fluid form. This shortage can be covered by the po tential of wind and photovoltaic energy sources. We also investigated the possibility of tourism expansion using the potential of wind and photovoltaic energy sources. Taking into account three types of capacity (energy, accommodation and transportation), Yakushima can accept approximately four times as many tourists as the current number of tourists. 相似文献
19.
Energy production from biomasses can be an important resource that, when combined with other green energies such as wind power and solar plants, can contribute to reduce dependency on fossil fuels. The aim of this study is to assess how agriculture could contribute to the production of bio-energy. A multi-period Weighted Goal Programming model (MpWGP) has been applied to identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production under three concurrent constraints: water, labour and soil availability. Alternative scenarios are considered that take into account the effect of climate change and social change. The MpWGP model was tested with data from the Rovigo county area (Italy) over a 15-year time period. 相似文献
20.
Irfan Ahmad Gondal Syed Athar Masood Rafiullah Khan 《International Journal of Hydrogen Energy》2018,43(12):6011-6039
Pakistan's energy crisis can be diminished through the use of Renewable and alternative sources of energy. Hydrogen as an energy vector is likely to replace the fossil fuels in the future owing to the political, financial and environmental factors associated with the latter. In this regard it is imperative that conscious effort is directed towards the production of hydrogen from Renewable resources. Renewable energy resources are abundantly available in Pakistan. The need to produce Hydrogen from Renewable resources in Pakistan (or any developing economy) is investigated because it is possible to store vast amount of intermittent renewable energy for later use. Thus the introduction of Hydrogen in the energy supply chain implies the start of a Pakistan Hydrogen Economy. Many nations have developed the Hydrogen Energy Roadmap, and if Pakistan has to follow suite it is only possible through the employment of Renewable energy resources. This study estimates the potential of different Renewable resources available in Pakistan i.e. Solar, Wind, Geothermal, Biomass and Municipal Solid waste. An estimate is then made for the potential of producing hydrogen from various established technologies from each of these Renewable resources. A number of reviews have been published stating the availability and usage of Renewable energy in Pakistan; however no specific study has been focused on the use of Renewable resources for developing a Hydrogen economy or a power-to-gas system in Pakistan. This study concludes that that Biomass is the most feasible feedstock for developing a Hydrogen supply chain in Pakistan with a potential to generate 6.6 million tons of Hydrogen annually, followed by Solar PV that has a generation potential of 2.8 million tons and then Municipal solid waste with a capacity of 1 million ton per annum. 相似文献