首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Managers and researchers have identified a reproducing population of grass carp (Ctenopharyngodon idella) in the western basin of Lake Erie, generating concern over the potential threat to ecosystem function in the Great Lakes Basin. Capture histories indicate that grass carp may be present at low levels in other areas of Lake Erie, necessitating a large scale, multi-jurisdictional response. As a result, a group of experts and decision makers began a structured decision making exercise to collaboratively address the threat and identify potential response actions. To aid this process, we developed a spatially-explicit periodic matrix population model to project grass carp abundance, and probabilistically evaluate specific management actions. We evaluated four potential management response actions ranging from no action, diffuse removal efforts, and concentrated removal efforts with and without a barrier on the Sandusky River to reduce spawning success. Based on our current knowledge, concentrated removal including a barrier on the Sandusky River provides the most likely path to achieving and maintaining a management target of no more than 10 fish/ha. Our understanding of grass carp ecology in Lake Erie is growing. This model and parameter development methods were designed to flexibly accommodate new information as our understanding of grass carp ecology evolves, or management objectives change. Ultimately, this modeling framework and use of Bayesian methods could facilitate management response efforts for other invasive species occurring over large scales and multiple jurisdictions.  相似文献   

2.
Infrequent captures of invasive, non-native grass carp (Ctenopharyngodon idella) have occurred in Lake Erie over the last 30+ years, with recent evidence suggesting wild reproduction in the lake’s western basin (WB) is occurring. Information on grass carp movements in the Laurentian Great Lakes is lacking, but an improved understanding of large-scale movements and potential areas of aggregation will help inform control strategies and risk assessment if grass carp spread to other parts of Lake Erie and other Great Lakes. Twenty-three grass carp captured in Lake Erie’s WB were implanted with acoustic transmitters and released. Movements were monitored with acoustic receivers deployed throughout Lake Erie and elsewhere in the Great Lakes. Grass carp dispersed up to 236 km, with approximately 25% of fish dispersing greater than 100 km from their release location. Mean daily movements ranged from <0.01 to 2.49 km/day, with the highest daily averages occurring in the spring and summer. The Sandusky, Detroit, and Maumee Rivers, and Plum Creek were the most heavily used WB tributaries. Seventeen percent of grass carp moved into Lake Erie’s central or eastern basins, although all fish eventually returned to the WB. One fish emigrated from Lake Erie through the Huron-Erie Corridor and into Lake Huron. Based on our results, past assessments may have underestimated the potential for grass carp to spread in the Great Lakes. We recommend focusing grass carp control efforts on Sandusky River and Plum Creek given their high use by tagged fish, and secondarily on Maumee and Detroit Rivers.  相似文献   

3.
Decisions about invasive species control and eradication can be difficult because of uncertainty in population demographics, movement ecology, and effectiveness of potential response actions. These decisions often include multiple stakeholders and management entities with potentially different objectives, management priorities, and jurisdictional authority. We provide a case study of using multi-party, collaborative decision analysis to aid decision makers in determining objectives and control actions for invasive grass carp (Ctenopharyngodon idella) in Lake Erie. Creating this process required binational (Canada-United States) and multi-state/provincial collaboration to craft a shared problem statement, establish objectives related to ecological, economic, and social concerns, determine potential response actions, and evaluate consequences and tradeoffs of these actions. We used participatory modeling and expert elicitation to evaluate the effectiveness of control scenarios that varied in action type (i.e., removal efforts and spawning barriers) and the temporal and spatial application of these actions. Using a matrix population model parameterized for western Lake Erie grass carp, we found that removal efforts concentrated in areas of high catchability, when paired with a spawning barrier on the Sandusky River, Ohio, USA, could effectively control grass carp in Lake Erie, if all assumptions are met. We determined a set of key uncertainties regarding gear catchability and current population size that have led to the transition to an adaptive management process. In addition, our work formed the basis for grass carp management plans for the states of Michigan and Ohio and has provided a means for collaboration among agencies for effective application of control efforts.  相似文献   

4.
There is concern of economic and environmental damage occuring if any of the four major aquacultured carp species of China, black carp Mylopharyngodon piceus, bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, or grass carp Ctenopharyngodon idella, were to establish in the Laurentian Great Lakes. All four are reproducing in the Mississippi River Basin. We review the status of these fishes in relation to the Great Lakes and their proximity to pathways into the Great Lakes, based on captures and collections of eggs and larvae. No black carp have been captured in the Great Lakes Basin. One silver carp and one bighead carp were captured within the Chicago Area Waterway System, on the Great Lakes side of electric barriers designed to keep carp from entering the Great Lakes from the greater Mississippi River Basin. Three bighead carp were captured in Lake Erie, none later than the year 2000. By December 2019, at least 650 grass carps had been captured in the Great Lakes Basin, most in western Lake Erie, but none in Lake Superior. Grass carp reproduction has been documented in the Sandusky and Maumee rivers in Ohio, tributaries of Lake Erie. We also discuss environmental DNA (eDNA) results as an early detection and monitoring tool for bighead and silver carps. Detection of eDNA does not necessarily indicate presence of live fish, but bigheaded carp eDNA has been detected on the Great Lakes side of the barriers and in a small proportion of samples from the western basin of Lake Erie.  相似文献   

5.
Relative contributions of aquaculture-origin and naturally-reproduced grass carp (Ctenopharyngodon idella) in the Laurentian Great Lakes have been unknown. We assessed occurrence and distribution of aquaculture-origin and wild grass carp in the Great Lakes using ploidy and otolith stable oxygen isotope (δ18O) data. We inferred natal river and dispersal from natal location for wild grass carp using otolith microchemistry and estimated ages of wild and aquaculture-origin fish to infer years in which natural reproduction and introductions occurred. Otolith δ18O indicated that the Great Lakes contain a mixture of wild grass carp and both diploid and triploid, aquaculture-origin grass carp. Eighty-eight percent of wild fish (n = 49 of 56) were caught in the Lake Erie basin. Otolith microchemistry indicated that most wild grass carp likely originated in the Sandusky or Maumee rivers where spawning has previously been confirmed, but results suggested recruitment from at least one other Great Lakes tributary may have occurred. Three fish showed evidence of movement between their inferred natal river in western Lake Erie and capture locations in other lakes in the Great Lakes basin. Age estimates indicated that multiple year classes of wild grass carp are present in the Lake Erie basin, recruitment to adulthood has occurred, and introductions of aquaculture-origin fish have happened over multiple years. Knowledge of sources contributing to grass carp in the Great Lakes basin will be useful for informing efforts to prevent further introductions and spread and to develop strategies to contain and control natural recruitment.  相似文献   

6.
Non-native grass carp (Ctenopharyngodon idella) have been stocked in the United States for vegetation control since the 1970s, and recent evidence suggests some natural reproduction in the Great Lakes basin. Despite all states and provinces bordering Lake Erie either banning grass carp or requiring imports of only sterile, U.S. Fish and Wildlife Service (USFWS)-certified triploids, the majority of grass carp captured and analyzed from Lake Erie are diploid, or reproductively viable. Potential sources of diploid grass carp include illegal importation, compromises in the USFWS-certified triploid shipments, migration from legal diploid states, or natural reproduction resulting from diploid stockings prior to the 1988 Ohio law requiring only certified triploids. The goal of this study was to explore the risk that diploid grass carp occur in the USFWS-certified triploid supply chain destined for Ohio. During 2015 and 2016, undercover Ohio Department of Natural Resources-Division of Wildlife law enforcement purchased 1200 grass carp from 16 distributors, and overnighted 80 dissected grass carp head and eyeball sample shipments (n?=?15 fish per shipment) for ploidy analysis by flow cytometry. Standardized methods for both field and laboratory processing were established. No diploid grass carp were detected in these collections, indicating fidelity of the USFWS-certified triploid grass carp supply chain in Ohio. Thus, these shipments are not a likely source of diploid grass carp in Lake Erie. This study is the first large-scale evaluation of the potential for ecological risk from diploid grass carp occurrence in USFSW-certified shipments of triploids for national distribution.  相似文献   

7.
Ballast water regulations implemented in the early 1990s appear not to have slowed the rate of new aquatic invasive species (AIS) establishment in the Great Lakes. With more invasive species on the horizon, we examine the question of whether eradication of AIS is a viable management strategy for the Laurentian Great Lakes, and what a coordinated AIS early detection and eradication program would entail. In-lake monitoring would be conducted to assess the effectiveness of regulations aimed at stopping new AIS, and to maximize the likelihood of early detection of new invaders. Monitoring would be focused on detecting the most probable invaders, the most invasion-prone habitats, and the species most conducive to eradication. When a new non-native species is discovered, an eradication assessment would be conducted and used to guide the management response. In light of high uncertainty, management decisions must be robust to a range of impact and control scenarios. Though prevention should continue to be the cornerstone of management efforts, we believe that a coordinated early detection and eradication program is warranted if the Great Lakes management community and stakeholders are serious about reducing undesired impacts stemming from new AIS in the Great Lakes. Development of such a program is an opportunity for the Laurentian Great Lakes resource management community to demonstrate global leadership in invasive species management.  相似文献   

8.
We use aging techniques, ploidy analysis, and otolith microchemistry to assess whether four grass carp Ctenopharyngodon idella captured from the Sandusky River, Ohio were the result of natural reproduction within the Lake Erie Basin. All four fish were of age 1 +. Multiple lines of evidence indicate that these fish were not aquaculture-reared and that they were most likely the result of successful reproduction in the Sandusky River. First, at least two of the fish were diploid; diploid grass carp cannot legally be released in the Great Lakes Basin. Second, strontium:calcium (Sr:Ca) ratios were elevated in all four grass carp from the Sandusky River, with elevated Sr:Ca ratios throughout the otolith transect, compared to grass carp from Missouri and Arkansas ponds. This reflects the high Sr:Ca ratio of the Sandusky River, and indicates that these fish lived in a high-strontium environment throughout their entire lives. Third, Sandusky River fish were higher in Sr:Ca ratio variability than fish from ponds, reflecting the high but spatially and temporally variable strontium concentrations of southwestern Lake Erie tributaries, and not the stable environment of pond aquaculture. Fourth, Sr:Ca ratios in the grass carp from the Sandusky River were lower in their 2011 growth increment (a high water year) than the 2012 growth increment (a low water year), reflecting the observed inverse relationship between discharge and strontium concentration in these rivers. We conclude that these four grass carp captured from the Sandusky River are most likely the result of natural reproduction within the Lake Erie Basin.  相似文献   

9.
In the one hundred years since sea lampreys (Petromyzon marinus) were discovered in Lake Erie, the species completed its invasion throughout the Great Lakes basin, contributed to the downfall of the commercial fishing industry, and served as a catalyst for the development of the collaborative fishery management regime that exists today. The sea lamprey invasion simultaneously caused wide-spread devastation while giving rise to a collective realization that the health of the Great Lakes would require ongoing cooperation among governments, scientists, and users of the resource. Since its inception, the effort to control sea lampreys in the Great Lakes has been defined by a “shoot for the moon” mentality. The desperation of communities directly harmed by the sea lamprey invasion, coupled with the determination and unyielding commitment to science by those tasked with addressing the problem, led to the formation of the only reported successful aquatic vertebrate invasive species control program at an ecosystem scale.  相似文献   

10.
Management actions taken to meet the phosphorus load targets in the 1978 Great Lakes Water Quality Agreement proved highly successful, initially. Eutrophication symptoms abated, and attention was redirected toward other important water quality problems. However, in the early 2000s Lake Erie, in particular, began to re-experience severe algal blooms and other problems associated with excessive nutrient inputs. The 2012 GLWQA prompted the development of updated phosphorus targets, and endorsed the concept of adaptive management. We propose that an active adaptive management program that maximizes learning opportunities will be imperative to sustain any future improvements realized in response to the new targets. Every year offers natural, albeit uncontrolled experiments to exploit the adaptive management concept of “learning by doing." A carefully thought out plan of complementary monitoring and modeling, supported by stakeholder engagement, will promote an improved understanding the processes that influence lake behavior and guide essential refinements to management goals and appropriate actions to attain them. In 2019 the International Joint Commission released a set of recommendations regarding the use of modeling approaches to support adaptive management in Lake Erie. We have incorporated those recommendations herein to further inspire the Great Lakes community to invest in an active adaptive management strategy that will serve us into the future.  相似文献   

11.
Because of renewed riparian interest stemming from the high Lake Erie water levels of the mid-1980s and mid-1990s, and the need for a concise summary of previous studies, a review and a new assessment of the impact of the Niagara River's Chippawa Grass Island Pool on Lake Erie water levels was undertaken. Numerous field and modeling studies dating from 1953 through 1988 provide different assessments of the impacts. The impacts reported by the studies range from “no measureable effect” to a 2 to 5 cm Lake Erie water level decrease. The different results are due to different methods and data, and the fact that the impacts are not directly measureable. A new Great Lakes routing model that more accurately reflects the upper Niagara River hydraulics by explicitly considering the management directive of the Chippawa Grass Island Pool is used to estimate the impacts of deviating from the present directive. The long-term impact of a 0.30 m increase or decrease from the current directive's long-term mean pool level on Lakes Erie, St. Clair, and Michigan-Huron levels is 5 cm, 4 cm, and 2 cm and −4 cm, −3 cm, and −2 cm, respectively. The lakes are minimally responsive to short-term changes in pool levels, with 50% of the Lake Erie impact achieved at about 6 months, and full impact achieved at about 2 years. The minimal lake response, the time lag to full impact, and the local problems resulting from directive deviations, make this a less favorable emergency response measure during periods of extreme lake levels than other alternatives.  相似文献   

12.
Coastal wetland seed banks exposed by low lake levels or through management actions fuel the reestablishment of emergent plant assemblages (i.e., wetland habitat) critical to Great Lakes aquatic biota. This project explored the effectiveness of using portable, water-filled cofferdams as a management tool to promote the natural growth of emergent vegetation from the seed bank in a Lake Erie coastal wetland. A series of dams stretching approximately 450 m was installed temporarily to isolate hydrologically a 10-ha corner of the Crane Creek wetland complex from Lake Erie. The test area was dewatered in 2004 to mimic a low-water year, and vegetation sampling characterized the wetland seed bank response at low, middle, and high elevations in areas open to and protected from bird and mammal herbivory. The nearly two-month drawdown stimulated a rapid seed-bank-driven response by 45 plant taxa. Herbivory had little effect on plant species richness, regardless of the location along an elevation gradient. Inundation contributed to the replacement of immature emergent plant species with submersed aquatic species after the dams failed and were removed prematurely. This study revealed a number of important issues that must be considered for effective long-term implementation of portable cofferdam technology to stimulate wetland seed banks, including duration of dewatering, product size, source of clean water, replacement of damaged dams, and regular maintenance. This technology is a potentially important tool in the arsenal used by resource managers seeking to rehabilitate the functions and values of Great Lakes coastal wetland habitats.  相似文献   

13.
Aquatic hypoxia within the Laurentian Great Lakes has contributed to various adverse ecological consequences and stimulated research interest in recent decades. An analysis of published peer-reviewed journal articles from 2000 to 2020 demonstrates an increasing trend of studies related to hypoxia in the Laurentian Great Lakes. However, the majority of these studies (78%) focus on Lake Erie and in particular the well-documented hypolimnetic hypoxic conditions that develop in the central basin of Lake Erie. This hypoxic zone is relatively large (up to 1.5 million ha), has substantial ecological effects, and motivates monitoring programs and water quality improvement initiatives. Nonetheless, the hypoxic zone in the central basin of Lake Erie is only one of over twenty documented hypoxic zones in the Laurentian Great Lakes. Moreover, hypoxic conditions in the Great Lakes are quite diverse. Here, we define and characterize a four-fold classification of Great Lakes hypoxic conditions: 1) hypolimnetic hypoxia, 2) over-winter hypoxia, 3) diel hypoxia, and 4) episodic hypoxia. We suggest that Great Lakes research and monitoring programs should seek to more broadly document hypoxic conditions and develop models to predict the temporal and spatial occurrence of hypoxia. Such efforts are particularly timely as future climatic conditions contributing to warmer temperatures, longer and more intense stratified periods, increased spring nutrient loading and more variable allocthonous inputs are expected to exacerbate three of the four hypoxic conditions described for the Great Lakes (hypolimnetic, diel, and episodic hypoxia).  相似文献   

14.
The New Zealand mud snail (Potamopyrgus antipodarum) is an invasive species in Europe, Japan, Australia, and North America. In the western United States it is a species of special concern where population densities in some rivers and streams are very large (∼300,000 per m2) and considerable ecological effects of its presence have been reported. Much less about the effects of this species is known in the Great Lakes, where the snail was found in Lake Ontario and the St. Lawrence River in 1991. Here we report the occurrence of the snail in Lake Erie. Two P. antipodarum were collected in 18 m deep water (sampling range 5–18 m) in Lake Erie off shore of Presque Isle State Park near Erie, Pennsylvania in the summer of 2005 and others were collected off of Sturgeon Point in Lake Erie (sampling range 5–20 m) south of Buffalo, NY and in the central basin of Lake Erie (18 m) in 2006. This finding demonstrates that this species continues to expand its range in the Great Lakes. The range expansion increases the likelihood that it may become established in rivers and streams emptying into the Great Lakes where higher densities and greater ecological damage may result.  相似文献   

15.
In this paper new maps are presented of mean circulation in the Great Lakes, employing long-term current observations from about 100 Great Lakes moorings during the 1960s to 1980s. Knowledge of the mean circulation in the Great Lakes is important for ecological and management issues because it provides an indication of transport pathways of nutrients and contaminants on longer time scales. Based on the availability of data, summer circulation patterns in all of the Great Lakes, winter circulation patterns in all of the Great Lakes except Lake Superior, and annual circulation patterns in Lakes Erie, Michigan, and Ontario were derived. Winter currents are generally stronger than summer currents, and, therefore, annual circulation closely resembles winter circulation. Circulation patterns tend to be cyclonic (counterclockwise) in the larger lakes (Lake Huron, Lake Michigan, and Lake Superior) with increased cyclonic circulation in winter. In the smaller lakes (Lake Erie and Lake Ontario), winter circulation is characterized by a two-gyre circulation pattern. Summer circulation in the smaller lakes is different; predominantly cyclonic in Lake Ontario and anticyclonic in Lake Erie.  相似文献   

16.
Bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, and grass carp Ctenopharyngodon idella (hereafter Asian carps) have expanded throughout the Mississippi River basin and threaten to invade Lakes Michigan and Erie. Adult bighead carp and grass carp have been captured in Lake Erie, but self-sustaining populations probably do not exist. We examined thermal conditions within Lake Erie to determine if Asian carps would mature, and to estimate time of year when fish would reach spawning condition. We also examined whether thermal and hydrologic conditions in the largest tributaries to western and central Lake Erie were suitable for spawning of Asian carps. We used length of undammed river, predicted summer temperatures, and predicted water velocity during flood events to determine whether sufficient lengths of river are available for spawning of Asian carps. Most rivers we examined have at least 100 km of passable river and summer temperatures suitable (> 21 C) for rapid incubation of eggs of Asian carps. Predicted water velocity and temperature were sufficient to ensure that incubating eggs, which drift in the water column, would hatch before reaching Lake Erie for most flood events in most rivers if spawned far enough upstream. The Maumee, Sandusky, and Grand Rivers were predicted to be the most likely to support spawning of Asian carps. The Black, Huron, Portage, and Vermilion Rivers were predicted to be less suitable. The weight of the evidence suggests that the largest western and central Lake Erie tributaries are thermally and hydrologically suitable to support spawning of Asian carps.  相似文献   

17.
Harmful algal blooms (HABs) impose major costs on aquatic ecosystems worldwide, including the Laurentian Great Lakes. Microbial consumers, including fungi, can have important interactions with bloom-forming algae and cyanobacteria, although relatively few studies have investigated the relationship between fungi and HABs. We examined changes in the aquatic fungal community coincident with the occurrence of large cyanobacterial blooms in two areas of the Great Lakes (western Lake Erie and Saginaw Bay, Lake Huron). We collected water samples over the course of bloom development, peak, and decline from 3 sites in western Lake Erie on 11 dates and 2 sites in Saginaw Bay on 4 dates. Single molecule sequencing (PacBio RS II) with two molecular markers (the internal transcribed spacer (ITS) of the rRNA locus using fungal-specific primers and the 18S rRNA with primers targeting early-diverging lineages of fungi) was used to estimate fungal community composition. Results indicate a diverse fungal community within the lakes, including several major fungal phyla. The Chytridiomycota were particularly well-represented (54.8% and 45.4% of ITS and 18S sequences, respectively), and we also found representation from both Cryptomycota and Aphelidiomycota, which are putatively obligate intracellular parasites. Further, we found associations between the fungal community (alpha diversity; community composition) and measures of bloom magnitude (chlorophyll a, phycocyanin, and microcystin concentrations) in western Lake Erie. Our results suggest potentially important spatial and temporal heterogeneity in the fungal community that motivates further research on functional importance of fungi in the Great Lakes and consequences for HABs and freshwater ecosystems more broadly.  相似文献   

18.
Bioenergetics and food web models are tools available for understanding and projecting the impacts of aquatic species invasions on food web structure and energy allocation of an ecosystem. However, uncertainty is inherent in modeling the impact of invasive species in novel ecosystems as assumptions must be made about physiological responses to novel environments and interactions with existing (native and non-native) species. Here we use the four major Chinese carps (FMCC) in the Laurentian Great Lakes as a case study to categorize and describe the suite of uncertainties inherent in projecting the impact of invasive species with bioenergetics and food web models. We approach this case study in a decision analytic framework, describing structural uncertainties, environmental variation, partial observability, partial controllability, and linguistic uncertainty. Finally, we review and give suggestions for how the use of methods including adaptive management, scenario planning, sensitivity analyses, and value of information as well as efforts to ensure clarity in language and model structure can enable modelers and managers to reduce and account for key uncertainties and make better decisions for the control of invasive species.  相似文献   

19.
The impacts of aquatic invasive species (AIS) on the recreational fishery in the Laurentian Great Lakes are of concern to managers and policy makers. Some AIS have the potential to depress sportfish populations, reducing recreational fishing opportunities and damaging local economies. Alternatives that could reduce the threat of AIS could be costly. Assessments of how AIS could affect recreational fishing participation and the economic value derived from it would contribute to the evaluation of these alternatives. We assessed best-case and worst-case scenarios for how a range of AIS could affect recreational fishing participation and economic value. We utilized previously developed scenarios for how AIS could affect sportfish populations as input for a recreational fishing model developed by Ready et al. (2018). Their model estimated changes in fishing participation and economic value from such scenarios. Given uncertainty in how AIS could affect sportfish, projected effects of AIS on economic value varied widely, with some scenarios likely to have minimal effects and others leading to losses of over $100 million annually. None of the scenarios would lead to a large percentage decrease in recreational fishing in the eight Great Lake states, largely because anglers have numerous inland fishing opportunities. Nevertheless, lakeshore communities dependent on Great Lakes fishing could still suffer considerable economic loss. Collectively the economic valuation of the range of scenarios narrows down the possible impacts on fishing and the economy that decision makers need to consider.  相似文献   

20.
Aquatic invasive species (AIS) management in the Great Lakes region of North America requires coordination between multiple agencies and stakeholder groups. Because the Great Lakes are an internationally managed entity, an understanding of policy preferences among stakeholders across borders is crucial for making both comprehensive and evidence-based decisions about fishery resources. We evaluated angler preferences for how future fishing scenarios are affected by aquatic invasive species in the Great Lakes region. Using a mixed-mode survey of anglers in Illinois, Michigan, Wisconsin, New York, and the Canadian province of Ontario, we conducted a stated choice experiment to understand and compare American and Canadian anglers. Results from a mixed multinomial logit model suggested fish habitat quality, amount of native fish species, impact of invasive species, availability of wash stations, and cost significantly influenced hypothetical scenarios chosen by survey respondents. Fish habitat and increased availability of boat wash stations had the greatest influence on the likelihood that a given scenario would be chosen by a survey respondent. We observed predominantly similar patterns across the border but did find that Canadians had stronger preferences for limiting AIS impacts and improving habitat quality. Our research thus suggests that an internationally consistent management approach would likely be well received among the anglers engaged in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号