共查询到20条相似文献,搜索用时 0 毫秒
1.
Merve Ozturk Adnan Midilli Ibrahim Dincer 《International Journal of Hydrogen Energy》2021,46(18):10697-10707
In this article, we propose a novel system to effectively deploy an integrated fuel processing system for hydrogen sulfide and natural gas resources available in the Black Sea to be used for a quick transition to the hydrogen economy. In this regard, the proposed system utilizes offshore wind and offshore photovoltaic power plants to meet the electricity demand of the electrolyzer. A PEM electrolyzer unit generates hydrogen from hydrogen sulfide that is available in the Black Sea deep water. The generated hydrogen and sulfur gas from hydrogen sulfide are stored in high-pressure tanks for later use. Hydrogen is blended with natural gas, and the blend is utilized for industrial and residential applications. The investigated system is modeled with the Aspen Plus software, and hydrogen production, blending, and combustion processes are analyzed accordingly. With the hydrogen addition up to 20% in the blend, the carbon dioxide emissions of combustion decrease from 14.7 kmol/h to 11.7 kmol/h, when the annual cost of natural gas is reduced from 9 billion $ to 8.3 billion $. The energy and exergy efficiencies for the combustion process are increased from 84% to 97% and from 62% to 72%, respectively by a 20% by volume hydrogen addition into natural gas. 相似文献
2.
《International Journal of Hydrogen Energy》2022,47(8):4977-5009
In the wake of the apparent impacts of climate change, the world is searching for clean energy transformations and a consequent transition to a carbon-neutral economy and life. The intermittent nature of renewable energy sources introduces several risks, and efficient energy storage technologies are developed to circumvent such issues. However, these storage methods also come with additional costs and uncertainties. Hydrogen is considered a viable option as an energy carrier and storage medium, offering versatility to the energy mix. This study reviews hydrogen production, storage, transmission, and applications avenues, describes the current global hydrogen market and compares national hydrogen strategies. A framework for evaluating the relative competitiveness of natural gas-exporting countries as hydrogen exporters is developed. Qatar's national hydrogen strategy should focus on blue and turquoise hydrogen production in the short/medium term with a mix of green hydrogen in the future term and investment in technological research and development to compete with other gas exporters that have abundant renewable energy potential. 相似文献
3.
《International Journal of Hydrogen Energy》2022,47(48):20695-20704
In this paper, a waste heat recovery system for a cement plant is developed and analyzed with the softwares of Engineering Equation Solver (EES) and Aspen Plus. This system is novel in a way that hydrogen is uniquely produced from waste heat obtained from the cement slag and blended with natural gas for domestic use. The presented system has a steam Rankine cycle combined with an organic Rankine cycle, an alkaline electrolyzer unit, oxygen and hydrogen storage tanks, a blending unit, and a combustor. Moreover, multiple useful outputs are obtained, such as power, hydrogen, and natural gas, as well as hydrogen blend. The power obtained from the organic Rankine cycle becomes the highest when the organic fluid R600a is used as a working fluid. The power generated from turbines is fed to the grid externally and the cement plant for internal use. Also, some power is utilized to produce hydrogen via an alkaline electrolyzer which has an efficiency of 62.94%. With the change of the percentage of hydrogen in the blend from 0% to 50%, the annual consumption of natural gas reduces from 48.261 billion m3 to 37.086 billion m3. Furthermore, the overall exergy and energy efficiencies for the plant are found at 55% and 22%, respectively. The carbon dioxide emissions in the released exhaust gas reduce from 34% to 28% when the same volumetric flow rates of the blend and oxygen gas are fed to the reactor. NO and NO2 emissions increase from 4.06 g/day to 7.45 g/day, and from 0.02 g/day to 0.09 g/day when the hydrogen content is increased from 5% to 20%. Moreover, carbon monoxide emissions decrease from 0.05 g/day to 0.02 g/day, accordingly. As a result, both combustion energy and exergy efficiencies increase with the addition of hydrogen. Furthermore, CO and CO2 emissions decrease with the hydrogen content increases. 相似文献
4.
《International Journal of Hydrogen Energy》2020,45(7):3899-3904
Hydrogen production for export to Japan and Korea is increasingly popular in Australia. The theoretically possible paths include the use of the excess wind and solar energy supply to the grid to produce hydrogen from natural gas or coal. As a contribution to this debate, here I discuss the present contribution of wind and solar to the electricity grid, how this contribution might be expanded to make a grid wind and solar only, what is the energy storage needed to permit this supply, and what is the ratio of domestic total primary energy supply to electricity use. These factors are required to determine the likeliness of producing hydrogen for export. The wind and solar energy capacity, presently at 6.7 and 11.4 GW, have to increase almost 8 times up to values of 53 and 90 GW respectively to support a wind and solar energy only electricity grid for the southeast states only. Additionally, it is necessary to build-up energy storage of actual power >50 GW and stored energy >3000 GW h to stabilize the grid. If the other states and territories are considered, and also the total primary energy supply (TPES) rather than just electricity, the wind and solar capacity must be increased of a further 6–8 times. It is concluded that it is extremely unlikely that hydrogen for export could be produced from the splitting of the water molecule by using excess wind and solar energy, and it is very unlikely that wind and solar may fully cover the local TPES needs. The most likely scenario is production hydrogen via syngas from either natural gas or coal. Production from natural gas and coal needs further development of techniques, to include CO2 capture, a way to reuse or store CO2, and finally, the better energy efficiency of the conversion processes. There are several challenges for using natural gas or coal to produce hydrogen with near-zero greenhouse gas emissions. Carbon capture, utilization, and storage technologies that ensure no CO2 is released in the production process, and new technologies to separate the oxygen from the air, and in case of natural gas, the water, and the CO2 from the combustion products, are urgently needed to make sense of the fossil fuel hydrogen production. There is no benefit from producing hydrogen from fossil fuels without addressing the CO2 issue, as well as the fuel energy penalty issue during conversion, that is simply translating in a net loss of fuel energy with the same CO2 emission. 相似文献
5.
《International Journal of Hydrogen Energy》2023,48(14):5595-5617
There is rising interest globally in the use of hydrogen for the provision of electricity or heat to industry, transport, and other applications in low-carbon energy systems. While there is attention to build out dedicated hydrogen infrastructure in the long-term, blending hydrogen into the existing natural gas pipeline network is also thought to be a promising strategy for incorporating hydrogen in the near-term. However, hydrogen injection into the existing gas grid poses additional challenges and considerations related to the ability of current gas infrastructure to operate with blended hydrogen levels. This review paper focuses on analyzing the current understanding of how much hydrogen can be integrated into the gas grid from an operational perspective and identifies areas where more research is needed. The review discusses the technical limits in hydrogen blending for both transmission and distribution networks; facilities in both systems are analyzed with respect to critical operational parameters, such as decrease in energy density, increased flow speed and pressure losses. Safety related challenges such as, embrittlement, leakage and combustion are also discussed. The review also summarizes current regulatory limits to hydrogen blending in different countries, including ongoing or proposed pilot hydrogen blending projects. 相似文献
6.
《International Journal of Hydrogen Energy》2019,44(55):29092-29099
Hydrogen separation membranes based on a heated metal foil of a palladium alloy, offer excellent permeability for hydrogen as a result of the solution-diffusion mechanism. Here, the possibility to separate hydrogen from the mixture of Natural Gas (NG) and hydrogen (NG+H2) with various NG concentrations using Pd, PdCu53 and PdAg24 hydrogen purification membranes is demonstrated. Hydrogen concentrations above ∼25% (for Pd and PdCu53) and ∼15% (for PdAg24) were required for the hydrogen separation to proceed at 400 °C and 5 bar pressure differential. Hydrogen permeability of the studied alloys could be almost fully recovered after switching the feed gas to pure hydrogen, indicating no significant interaction between the natural gas components and the membranes surface at the current experimental condition. Hydrogen flux of the membranes at various pressure differential was measured and no changes in the hydrogen permeation mechanism could be noticed under (NG 50%+H2) mixture. The hydrogen separation capability of the membranes is suggested to be mainly controlled by the operating temperature and the hydrogen partial pressure. 相似文献
7.
Energy usage in Pakistan has increased rapidly in past few years due to increase in economic growth. Inadequate and inconsistent supply of energy has created pressure on the industrial and commercial sectors of Pakistan and has also affected environment. Demand has already exceeded supply and load shedding has become common phenomenon. Due to excessive consumption of energy resources it would become difficult to meet future energy demands. This necessitates proper management of existing and exploration of new energy resources. Energy resource management is highly dependent on the supply and demand pattern. This paper highlights the future demands, production and supply of energy produced from natural gas based on economic and environmental constraints in Pakistan with special emphasis on management of natural gas. An attempt has been made by proposing a suitable course of action to meet the rising gas demand. A mechanism has been proposed to evaluate Pakistan's future gas demand through quantitative analysis of base, worst and best/chosen option. CO2 emission for all cases has also been evaluated. The potential, constraints and possible solutions to develop alternative renewable energy resources in the country have also been discussed. This work will be fruitful for the decision makers responsible for energy planning of the country. This work is not only helpful for Pakistan but is equally important to other developing countries to manage their energy resources. 相似文献
8.
《International Journal of Hydrogen Energy》2022,47(24):12410-12420
Natural gas, which is among the alternative fuels, has become widespread in the transportation as it is both economical and environmentally friendly. While the use of natural gas is at a significant level in spark ignition engines, it has not yet been implemented in compression ignition engines (CI) as it worsens combustion due to ignition delay. In CI engines, however, the combustion properties of natural gas (NG) can be improved by adding hydrogen (H2) to NG. This is one of the methods applied to use natural gas in CI engines. In this experimental study, two different volumetric rates of NG and NG/H2 mixtures were added to the combustion air in a CI engine, and engine performance and emissions were examined under different engine loads. The experiments were performed at two different engine speeds, four different engine loads and no-load condition. An engine cylinder pressure of 59.16 bar, which is the closest value to the 59.39 bar obtained in the use of diesel fuel, was obtained at 1500 rpm for “Diesel + NG(500 g/h)” and 59.9 bar (highest values) was obtained for “Diesel + (500 g/h) [80%NG+20%H2]" at 1750 rpm. For “Diesel + NG(250 g/h)” (Mix1) and “Diesel + NG(500 g/h)” (Mix2), as the engine speed increases, at the point where the maximum in-cylinder pressure is obtained occurs further to the right from top dead center (TDC). With the addition of 500 g/h NG, an increase of 4.5% was achieved in the cylinder pressure at full load, while an increase of 6.5% was achieved in the case of using “Diesel + (500 g/h) [80%NG+20%H2]". Although the effect of the NG and NG/H2 mixtures on in-cylinder pressure was small, the fuel consumption and thermal efficiency improved. Substantial improvements in hydrocarbon (HC) emissions were observed with the use of “Diesel + (250 g/h)[80%NG+20%H2]”. Carbon dioxide (CO2) emissions decreased with speed increase, but no significant differences in terms of CO2 emissions were observed between the mixtures. There was a maximum difference of 15% between the diesel and the mixtures in CO2 emissions. Although there was a decrease in nitrogen oxide (NOx) levels with the increase in engine speed, the lowest NOx emissions of 447.6 ppmvol was observed in “Diesel + NG(250 g/h)” (Mix1) at 1750 rpm at maximum load. 相似文献
9.
《International Journal of Hydrogen Energy》2022,47(27):13213-13225
The paper presents a technical, economic and environmental analyses of a chamber furnace used to heat the charge before forging. The energy efficiency of the furnace before the modernization was 18%, after the modernization it was 31% (partial modernization due to large financial outlays). Other variants were also analysed: complete modernization, the variant of furnace modernization with 30% hydrogen content in the gas and the variant with 100% hydrogen as fuel. The analyses showed that with the current gas price (0.025 EUR/kWh) and the price of emission allowances (nearly 60 EUR/MgCO2) and 100 cycles/year, the difference in Net Present Value (NPV) before base variant and partial modernization is around 900,000 EUR and before base variant and full modernization is 1,200,000 EUR. The introduction of the gas and 30% of hydrogen co-combustion option versus the base scenario option for 150 cycles per year results in a NPV difference of at least 2 million EUR. The option of 100% hydrogen as a fuel is the most advantageous from the point of view of reducing CO2 emissions - it is largely influenced by the rising prices of CO2 emission allowances. 相似文献
10.
11.
Hydrogen added to natural gas improves the process of combustion with the possibility to develop engines with higher performance and lower environmental impact. In this paper experimental and numerical analyses on a multi cylinder stoichiometric heavy duty engine, fuelled with natural gas–hydrogen blends, are reported. Some constrains on hydrogen content and maximum load achievable have limited the scope of investigation. A specific modelling of the reference engine was developed to extend the study at full load condition and at higher hydrogen content. The results showed a higher combustion speed when hydrogen content in the fuel is increased. However, the positive effect of shorter combustion duration on thermal efficiency is mitigated by higher wall heat loss, due to higher combustion temperatures. Therefore lower CO2 emissions are due only to the substitution of natural gas with hydrogen, making crucial the way of hydrogen producing to have a benefit on well-to-wheel CO2 emissions. 相似文献
12.
《International Journal of Hydrogen Energy》2022,47(46):19977-19988
In this study, comprehensive thermodynamic analysis and techno-economic assessment studies of the renewable hydrogen production and its blending with natural gas in the existing pipelines are performed. Solar and wind energy-based on-grid and off-grid power systems are designed and compared in energy, exergy, and cost. Solar PV panels and wind turbines are particularly considered for electricity and hydrogen production for residential applications in an environmentally benign way. Fuel cell units are included to supply continuous electricity in the off-grid system. Here, the heat required for a community consisting of 100 houses is provided by hydrogen and natural gas mixture as a more environmentally benign fuel. The costs of capital, fuel, operation, and maintenance are calculated and evaluated in detail. The total net present costs are calculated as $6.95 million and $2.47 million for the off-grid and on-grid power systems, respectively. For the off-grid system, energy and exergy efficiencies are calculated as 32.64% and 40.73%, respectively. Finally, the energy and exergy efficiencies of the on-grid system are determined as 26.58% and 35.25%, respectively. 相似文献
13.
《International Journal of Hydrogen Energy》2021,46(63):32318-32330
The first applications of hydrogen in a natural gas grid will be the admixing of low concentrations in an existing distribution grid. For easy quality and process control, it is essential to monitor the hydrogen concentration in real time, preferably using cost effective monitoring solutions. In this paper, we introduce the use of a platinum based hydrogen sensor that can accurately (at 0.1 vol%) and reversibly monitor the concentration of hydrogen in a carrier gas. This carrier gas, that can be nitrogen, methane or natural gas, has no influence on the accuracy of the hydrogen detection. The hydrogen sensor consists of an interdigitated electrode on a chip coated with a platinum nanocomposite layer that interacts with the gas. This chip can be easily added to a gas sensor for natural gas and biogas that was already developed in previous research. Just by the addition of an extra chip, we extended the applicability of the natural gas sensor to hydrogen admixing. The feasibility of the sensor was demonstrated in our own (TNO) laboratory, and at a field test location of the HyDeploy program at Keele University in the U.K. 相似文献
14.
《International Journal of Hydrogen Energy》2023,48(13):5186-5196
When blending hydrogen into existing natural gas pipelines, the non-uniform concentration distribution caused by the density difference between hydrogen and natural gas will result in the fluctuations of local hydrogen partial pressure, which may exceed the set one, leading to pipeline failure, leakage, measurement error, and terminal appliance. To solve the problem, the H2–CH4 stratification in the horizontal and undulated pipe was investigated experimentally and with numerical simulations. The results show that in the gas stagnant situation, hydrogen-methane blending process will cause an obvious stratification phenomenon. The relations between the elevation, pressure, hydrogen fraction, etc., and the gas stratification are figured out. Moreover, even when the blended gas flows at a low rate, the hydrogen-caused stratification should also be considered. Thereafter, the blended gas should be controlled into a situation with low pressure and high speed, which could help to set the pressure, speed, the fraction of H2. 相似文献
15.
《International Journal of Hydrogen Energy》2022,47(85):36163-36174
Logistics of hydrogen is one of the bottlenecks of a hydrogen economy. In this study, a pressure swing adsorption (PSA) system is proposed for the separation of hydrogen from natural gas, co-transported in the natural gas grid. The economic feasibility of hydrogen supplied by a PSA system at a refuelling station is assessed and compared with other alternatives. The adsorbent material is key to the design of a PSA system, which determines the operation performance and cost. It is concluded that a refuelling station with hydrogen supplied by a PSA system is economically feasible. The final hydrogen price including hydrogen supply, compression, storage, and dispensing is compared with two other hydrogen supply methods: on-site electrolysis and tube-trailer transported hydrogen. Currently, PSA supplied hydrogen is a more economical option. On-site electrolysis can become a more economical option in the future with improved cell efficiencies and reduced electricity prices. Tube-trailer transported hydrogen is highly influenced by the distance travelled. The findings of this study will help with more efficient distribution of hydrogen. 相似文献
16.
《International Journal of Hydrogen Energy》2023,48(16):6451-6476
In the wake of the devastating consequences of climate change, many countries are searching for alternative renewable energy. Hydrogen, the most abundant element on earth, is an alternative clean and non-toxic energy source. Palladium-based membranes and their alloys are categorized as inorganic metallic membranes with the highest selectivity and permeation rate for hydrogen production. Pd-based membranes have great potential for resolving environmental concerns and adverse side effects of greenhouse gases resulting from industrial processes. This paper analyses Pd-based membranes and their industrial applications while focusing on natural gas and methane as non-renewable feedstocks for hydrogen production. Steam reforming of natural gas and methane, partial oxidation reaction, auto thermal reforming, dry reforming, and gas to liquid process are among the processes that take place in a Pd-based membrane reactor and are discussed in this paper. Finally, all the ongoing research and development on both laboratory and industrial scales are reviewed. 相似文献
17.
《International Journal of Hydrogen Energy》2023,48(34):12581-12599
Large scale, low cost, and low carbon intensity hydrogen production is needed to reduce emissions in the energy and transportation sectors. We present a techno-economic analysis and life cycle assessment of natural gas pyrolysis technologies for hydrogen production, with carbon black (CB) as a co-product. Four designs were considered based on the source of heat to the pyrolysis system, the combustion medium, and use of carbon capture (CC) technology. The oxygen-fired-CB design with CC is the most attractive from financial and environmental perspectives, superior to a conventional steam methane reformer (SMR) process with CC. The estimated pre-tax minimum hydrogen selling prices for the pyrolysis technologies range between $1.08/kg and $2.43/kg when natural gas (NG) costs $3.76/GJ. Key advantages include near-zero onsite GHG emissions of the oxygen-fired-CB design with CC and up to 41% lower GHG emissions compared to the SMR + CC process. The results indicate that natural gas pyrolysis may be a feasible pathway for hydrogen production. 相似文献
18.
Giovanni Di Lullo Abayomi Olufemi Oni Amit Kumar 《International Journal of Hydrogen Energy》2021,46(36):19202-19216
Jurisdictions are looking into mixing hydrogen into the natural gas (NG) system to reduce greenhouse gas (GHG) emissions. Earlier studies have focused on well-to-wheel analysis of H2 fuel cell vehicles, using high-level estimates for transportation-based emissions. There is limited research on transportation emissions of hythane, a blend of H2 and NG used for combustion. An in-depth analysis of the pipeline transportation system was performed for hythane and includes sensitivity and uncertainty analyses. When hythane with 15% H2 is used, transportation GHG emissions (gCO2eq/GJ) increase by 8%, combustion GHG emissions (gCO2eq/GJ) decrease by 5%, and pipeline energy capacity (GJ/hr) decreases by 11% for 50–100 million m3/d pipelines. Well-to-combustion (WTC) emissions increase by 2.0% without CCS, stay the same with a 41% CCS rate, decrease by 2.8% for the 100% CCS scenario, and decrease by 3.6% in the optimal CO2-free scenario. While hythane contains 15% H2 by volume only 5% of the gas’ energy comes from H2, limiting its GHG benefit. 相似文献
19.
《International Journal of Hydrogen Energy》2020,45(3):1385-1398
A novel project solution for large-scale hydrogen application is proposed utilizing surplus wind and solar generated electricity for hydrogen generation and NG pipeline transportation for hydrogen-natural gas mixtures (called HCNG). This application can practically solve urgent issues of large-scale surplus wind and solar generated electricity and increasing NG demand in China. Economic evaluation is performed in terms of electricity and equipment capacity estimation, cost estimation, sensitivity analysis, profitability analysis and parametric study. Equipment expenses are dominant in the construction period, especially those of the electrolysers. Electricity cost and transportation cost are the main annual operating costs and greatly influence the HCNG and pure hydrogen costs. The project proves to be feasible through the profitability analysis. The main influence items are tested individually to guarantee project profitability within 22 years. The project can reduce 388.40 M Nm3 CO2 emissions and increase 2998.52 M$ incomes for solar and wind power stations. 相似文献
20.
Juan Sebastian Roa Pinto Pierre Bachaud Tiphaine Fargetton Nicolas Ferrando Laurent Jeannin Floriane Louvet 《International Journal of Hydrogen Energy》2021,46(5):4229-4240
In this work, the e-PPC-SAFT equation of state has been parameterized to predict phase equilibrium of the system H2 + CH4 + H2O + Na+Cl? in conditions of temperature, pressure and salinities of interest for gas storage in salt caverns. The ions parameters have been adjusted to match salted water properties such as mean ionic coefficient activities, vapor pressures and molar densities. Furthermore, binary interaction parameters between hydrogen, methane, water, Na+ and Cl? have been adjusted to match gas solubility data through Henry constant data. The validity ranges of this model are 0–200 °C for temperatures, 0–300 bar for pressures, and 0 to 8 molNaCl/kgH2O for salinities. The e-PPC-SAFT equation of state has then been used to model gas storage in salt caverns. The performance of a storage of pure methane, pure hydrogen and a mixture methane + hydrogen have been compared. The simulations of the storage cycles show that integrating up to 20% of hydrogen in caverns does not have a major influence on temperature, pressure and water content compared to pure methane storage. They also allowed to estimate the thermodynamic properties of the system during the storage operations, like the water content in the gaseous phase. The developed model constitutes thus an interesting tool to help size surface installations and to operate caverns. 相似文献