首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The need for a clean and an environmentally non-degrading sustainable energy resource has grown worldwide due to the huge depletion of other fuel sources, as a result, production of hydrogen by electrochemical water splitting is considered as a potential answer to this pertaining need. However, development of low-cost electrocatalyst as a replacement for Pt and RuO2 for both Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) remains a significant challenge for the production of hydrogen at a larger scale. This study presents the synthesis of non-noble metal-based lanthanum doped copper oxide nanoparticles as a potential bi-functional electrocatalyst for overall water splitting in alkaline electrolyte. The optimized 1% lanthanum (La) doped CuO electrocatalyst exhibits outstanding OER and HER activity in 1.0 M KOH electrolyte posting a potential of 1.552 V vs RHE for OER and −0.173 V vs RHE for HER at a current density of ~10 mAcm−2. Significantly, the functional bi-catalyst exhibits a low cell voltage of 1.6 V to achieve overall water splitting at a current density of 10 mAcm−2 along with long-term stability of 13.5 h for a cell voltage of 2.25 V at a constant current density of 30 mAcm−2 with only 20% initial current lose after 13.5 h. The results demonstrate that the incorporation of the rare-earth element onto CuO nanoparticles has made it a viable high-end non-noble electrocatalyst for overall water splitting.  相似文献   

2.
Electrochemical water electrolyser though an assuring solution for clean hydrogen production, the sluggish kinetics and high cost of existing precious metal electrocatalyst remains a barrier to its effective utilization. Herein, solution combustion route derived perovskite type barium nickelate (BaNiO3) nanoparticles were developed and studied for their bifunctional electrocatalytic properties towards overall water splitting. The unannealed BaNiO3 nanoparticles exhibited the highest OER and HER activity with overpotentials 253 mV and 427 mV respectively to attain 10 mAcm−2 in 1.0 M KOH. Using unannealed BaNiO3 as a bifunctional electrocatalyst in a two-electrode alkaline electrolyser, the cell was able to achieve the benchmark current density at a low cell voltage of 1.82 V. Impressively the setup's electrocatalytic performance improved 4.9% after continuous overall water splitting for 24 h at 30 mAcm−2. Therefore, BaNiO3 nanoparticles can be a low-cost and efficient alternative for noble metal electrocatalysts for clean H2 production.  相似文献   

3.
Designing high-efficiency catalysts for overall water splitting is critical to reduce the cost of hydrogen fuel as a clean and renewable energy source in future society. In this work, a Mo-, P-codoped NiFeSe was successfully synthesized on nickel foam (NF) by one-step electrodeposition. Through the doping strategy, the conductivity can be well promoted, and the production of nanosheets on the catalyst surface and active phases during hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) provided much more active sites, which leaded to efficient HER/OER performances of as-synthesized Mo-, P-codoped NiFeSe catalysts, i.e., a low overpotential of 100 mV/200 mV at current density of 10 mA cm−2 in 1.0 M KOH with stability of 95 h/60 h, respectively. It only required 1.53 V to deliver a current density of 10 mA cm−2 in overall water splitting and maintained outstanding durability for 100 h. This work is beneficial to future design of high efficient and low-cost bifunctional catalysts for overall water splitting.  相似文献   

4.
Rationally designing an efficient and cost-effective bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a primary matter in applying electrocatalytic water splitting. Herein, a self-supported FeNiCo-based amorphous catalyst with a hierarchical micro/nanoporous structure is fabricated by dealloying an amorphous/nanocrystalline precursor. The amorphous nanoporous framework enables the prepared electrocatalyst to afford fast reaction kinetics, abundant active sites, and enhanced electrochemical active surface areas (ECSAs). Such structural advantages and the synergistic effects of the ternary transition metals contribute to a dramatic catalytic activity of this electrocatalyst under alkaline conditions, which delivers the current density of 10 mA cm−2 at a low overpotential of 134 mV for HER and 206 mV for OER, respectively. Furthermore, a full electrolysis apparatus constructed by the self-supported hierarchical micro/nanoporous FeNiCo-based amorphous electrocatalyst as both cathode and anode acquires a dramatically low voltage of 1.58 V operating at 10 mA cm−2 along with stability for more than 24 h for overall water splitting.  相似文献   

5.
Developing robust non-noble catalysts towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is vital for large-scale hydrogen production from electrochemical water splitting. Here, we synthesize Sn- and Fe-containing sulfides and oxyhydroxides anchored on nickel foam (SnFeSxOy/NF) using a solvothermal method, in which a heterostructure is generated between the sulfides and oxyhydroxides. The SnFeSxOy/NF exhibits low overpotentials of 85, 167, 249, and 324 mV at 10, 100, 500 and 1000 mA cm?2 for the HER, respectively, and a low overpotential of only 281 mV at 100 mA cm?2 for the OER. When it serves as both anode and cathode to assemble an electrolyzer, the cell voltage is only 1.69 V at 50 mA cm?2. The sulfides should be the efficient active species for the HER, while the oxyhydroxides are highly active for the OER. The unique sulfide/oxyhydroxide heterostructure facilitates charge transfer and lowers reaction barrier, thus promoting electrocatalytic processes.  相似文献   

6.
The development of bifunctional catalysts that can be applied to both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is widely regarded as a key factor in the production of sustainable hydrogen fuel by electrochemical water splitting. In this work, we present a high-performance electrocatalyst based on nickel-cobalt metal-organic frameworks for overall water splitting. The as-obtained catalyst shows low overpotential to reaches the current density of 10 mA cm−2 with 249 mV for OER and 143 mV for HER in alkaline media, respectively. More importantly, when the electrolyzer was assembled with the as-prepared catalyst as anode and cathode simultaneously, it demonstrates excellent activity just applies a potential of 1.68 V to achieve 10 mA cm−2 current density for overall water splitting.  相似文献   

7.
a low-cost electrode with lawn-like NiS2 nanowire arrays on flexible carbon fiber paper was synthesized, for the first time, via sulfurization of Ni2(CO3)(OH)2 precursor. And the performance of this electrode as a bifunctional electrocatalyst toward both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) was evaluated. It shows that NiS2 NWs/CFP requires small overpotentials of 165 mV for HER and 246 mV for OER, respectively, to deliver the current density of 10 mA cm?2 in 1.0 M KOH. The corresponding symmetric two-electrode alkaline water electrolyzer only needs a cell voltage of 1.59 V to afford 10 mA cm?2 water-splitting current density.  相似文献   

8.
Developing high-efficiency and low-cost electrocatalyst is significant for the application of water splitting technology. Herein, Co3O4 nanoparticles and MnO2 nanosheets are separately synthesized and subsequently assembled into a unique 0/2-dimensional heterostructure via van der Waals interactions. The consequent composites expose abundant accessible active sites and expedite the reaction kinetics, which can be testified by the superiorities in Tafel slope, exchange current density and double-layer capacitance, only requiring overpotentials of 355 and 129 mV for oxygen and hydrogen evolution reactions in 1.0 M KOH at 10 mA cm?2, respectively. Moreover, a cell voltage of 1.660 V can drive the electrolyzer at 10 mA cm?2. Benefitted from robust integration, the original aggregation and restacking of individual materials have been overcome, thereby leading to superior elelctrocatalysis durability. This facile and universal strategy may inspire the researchers on the design and construction of advanced functional composites.  相似文献   

9.
Searching high-active, stable and abundant bifunctional catalysts to replace noble metals for hydrogen and oxygen evolution reactions (HER and OER) is desired. Herein, petal-like NiCoP sheets were synthesized on carbon paper covered with a 3D nitrogen-doped carbon nanofiber network (NiCoP/CNNCP) by a simple hydrothermal process followed by phosphorization. The HER overpotential in 0.5 M H2SO4 and OER overpotential in 1 M KOH of the NiCoP/CNNCP electrode only required 55 mV and 260 mV to drive a current density of 10 mA cm?2, respectively, which was comparable or even better than most nickel-and cobalt-based phosphide catalysts. The overall water-splitting electrolyzer with an asymmetric electrolyte system assembled using NiCoP/CNNCP as bifunctional electrodes required an extremely low cell voltage of 1.04 V to achieve a current density of 10 mA cm?2, which was much lower than almost all alkaline electrolysis systems.  相似文献   

10.
In this study, an electrode of g-PTAP, a novel bifunctional catalyst for photoelectrochemical was fabricated and utilized for water splitting. The graphitic-poly (2,4,6-triaminopyrimidine (g-PTAP) was synthesized by the thermal vapor condensation polymerization (TVCP) method on FTO glass. The structure, morphology, and optical characteristics of the resultant g-PTAP were analyzed using analytical techniques such as FT-IR, Raman, XRD, XPS, CHNS, FE-SEM, EDS, and DRS. The synthesized g-PTAP was graphitic with sheet-like morphology and revealed maximum light absorbance capacity in the visible range. The DFT calculation showed an appropriate HOMO-LUMO band position for overall water splitting which was verified experimentally for H2 and O2 generation at photocathode and photoanode, respectively. Moreover, the g-PTAP sample exhibited good photo-stability as a photocathode as compared to a photoanode. This work can provide a pathway for fabricating highly efficient semiconductor photocatalyst for overall water splitting and solar energy such as conversion.  相似文献   

11.
In this work, we demonstrated a facile strategy to fabricate paintbrush-like Co Doped Cu3P architecture grown on porous copper foam (Co-Cu3P/CF), which was obtained from cation exchange reaction followed by a pyrolysis assisted phosphorization step. Co-Cu3P/CF showed outstanding electrocatalytic performance for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in 1 M NaOH solution, affording low overpotential of 270 mV to reach the current density of 50 mA cm−2 for OER. As for HER, a low overpotential of 200 mV is required to obtain the same catalytic current density. The overall water electrolyzer by using Co-Cu3P/CF as both anode and cathode showed a low cell voltage of 1.55 V to deliver 10 mA cm−2. The excellent electrocatalytic performance of Co-Cu3P/CF could be ascribed to its paintbrush-like hierarchical architecture, offering plentiful of active sites and accelerating electrolyte penetration, the presence of Co dopant also could rationally modify its electronic properties, and thus lead to the synergetic effects.  相似文献   

12.
Electrocatalytic overall water splitting technology has received considerable attention in recent years. The fabrication of low-cost, earth-rich and potent bifunctional electrocatalysts is vital for hydrogen evolution (HER) and oxygen evolution reactions (OER). Herein, the N and S co-doped NiCo2O4@CoMoO4 heterostructures (N, S–NCO@CMO400) are fabricated by CVD and hydrothermal methods. N and S atoms as auxiliary active centers can increase the activity of Ni, Co and Mo atoms at the same time. Hierarchical heterostructures generate more interfaces to accelerate mass transfer and enlarge the electrochemical surface area, which greatly enhances the catalytic activity. The catalyst displays outstanding OER performance. The overpotentials of OER and HER are 165 and 100 mV at a current density of 10 mA cm?2, respectively. More importantly, the N, S–NCO@CMO400-based water splitting cell has a low voltage of 1.46 V at 10 mA cm?2. Furthermore, the N, S–NCO@CMO400 runs for 120 h in stable operation. This work provides new ideas for the design of hierarchical heterostructures with two-element incorporation.  相似文献   

13.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

14.
Development of low cost and high efficiency electrocatalysts for water splitting systems to produce renewable hydrogen energy is still a significant requirement. The engineering of nanostructure and element doping are effective methods to further improve the performance of catalysts. Nonmetal (such as N, P, S) doping has been extensively investigated, while the report of metal doping is relatively few. Herein, Fe doped CoP 1D hollow nanoneedles on carbon cloth (CC) are designed and fabricated by a hydrothermal method and subsequent phosphorization procedure. The conversion of Fe doped Co-hydroxide@CC to Fe–CoP can produce large number of nanopores, which are closely connected to each other, and form hollow structures within the nanoneedles. Benefiting from the effective Fe doping and the particular hollow nanoneedle structure, the obtained Fe–CoP@CC demonstrates good electrocatalytic activity for hydrogen evolution reaction (HER) both in alkaline and acidic solution, affording a current density of 10 mA cm−2 at overpotential of 49 mV and 80 mV, respectively. Moreover, the two-electrode electrolyzer with Fe–CoP@CC as both the cathode and anode catalyst achieve a current density of 10 mA cm−2 at a cell voltage of 1.58 V in 1.0 M KOH solution. The results illustrate that the obtained hollow Fe–CoP@CC nanoneedles can serve as an efficient catalyst for overall water splitting.  相似文献   

15.
The development of inexpensive electrocatalysts with excellent electrocatalytic activity for the hydrogen and oxygen evolution reactions (HER and OER, respectively) has been challenging. In this study, we synthesized cobalt molybdenum ruthenium oxide with porous, loosely-assembled nanoplate morphology. The CoMoRu0.25Ox/NF electrocatalyst exhibited the highest electrocatalytic activity, requiring overpotentials of 230 and 78 mV for the OER and HER, respectively, to attain a current density of 10 mA cm?2; moreover, its long-term stability was outstanding. The electrocatalyst required a cell voltage of only 1.51 V for overall water splitting in an alkaline medium, which was lower than that required by many CoMo-based catalysts.  相似文献   

16.
The production of clean hydrogen fuel by the electrolysis of water requires highly active, low-cost and facilely prepared electrocatalyst that minimizes energy consumption. Here we report an active cobalt boride (CoB)-derived electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The CoB catalyst can be readily deposed on 3D nickel foam (NF) using a simple electroless plating method. A comprehensive analysis of the CoB catalyst with scanning electron microscopy transmission (SEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques revealed that CoOOH is formed on the surface of CoB catalyst during the OER process and Co(OH)2 is formed in the HER process. The catalyst derived from CoB/NF exhibits low overpotentials towards both OER and HER in alkaline solution. The electrolysis cell using the CoB-derived catalyst couple requires a cell voltage of 1.69 V to afford a current density of 10 mA/cm2, which compares favorably with most non-noble bifunctional electrocatalysts. The favorable combination of high-performance, low cost and facile preparation suggests that transition metal borides may act as promising electrocatalyst for water splitting.  相似文献   

17.
In order to reduce the cost of electrocatalysts and increase the exposure of the Ir active sites while ensuring the stability of the catalyst, a N-doped carbon nanotube (NCNT) is applied as a conductive support to confine the Ir clusters for avoiding them growing up via a modified method based on pyrolysis of a mixture of melamine, ferric chloride and iridium trichloride. It is found that Ir species in the as-obtained Ir(20)/Fe@NCNT-900 composite exist in two forms, Ir nanoclusters (1–2 nm) dotted on the wall of NCNT and the Ir atomically scattered on the Fe nanoparticles wrapped in the NCNT. Although the Ir content of Ir(20)/Fe@NCNT-900 is extremely low (~4 wt% Ir), the composite catalyst delivers excellent activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) with an exceptionally low overpotential of 4.7 mV/11 mV for HER and 300 mV/270 mV for OER to drive 10 mA cm?2 in 0.5 M H2SO4/1.0 M KOH electrolyte respectively, which exceeds the commercial Pt/C (20 wt% Pt) and IrO2 benchmarks. In addition, it has much higher mass activity for OER at 1.55 V (1.78 A mg?1Ir) than those of the referenced catalysts in acid. The cell voltage of the two-electrode system assembled by Ir(20)/Fe@NCNT-900 for total water splitting in acidic and alkaline media are only 1.520 V and 1.510 V to afford 10 mA cm?2 separately, lower than that of Pt/C||IrO2 and with a good stability. Our work provides a construction method of low-content precious metal composite catalysts which can be applied in OER and overall water splitting field.  相似文献   

18.
Hydrogen production from electrocatalytic water splitting is viewed as one of the most promising methods to generate the clean energy. In this work, we successfully prepared an electrode material by growing phosphorus-doped Ni3S2 (PNi3S2) on nickel foam substrate (NF) under hydrothermal conditions. The phosphorus-doping has an obvious effect on the morphology of Ni3S2 on the surface of the nickel foam, which probably results in more active sites, higher electrical conductivity and faster mass transfer. The resulting electrode material displays excellent electrocatalytic activities and stability towards both OER (oxygen evolution reaction) and HER (hydrogen evolution reaction). A relatively low overpotential of 306 mV is required to reach the current density of 100 mA cm?2 for OER and 137 mV at 10 mA cm?2 for HER in 1 M KOH solution. When PNi3S2/NF was used in an electrolyzer for full water splitting, it can generate a current density of 10 mA cm?2 at 1.47 V with excellent stability for more than 20 h.  相似文献   

19.
Designing and synthesizing of efficient and inexpensive bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is one of the current research topics. In this study, NiFeCMo film in nickel mesh substrate is prepared by one-step direct-current electrodeposition method. The obtained NiFeCMo film shows the excellent electrocatalytic activity, which only requires overpotentials of 254 mV for HER and 256 mV for OER to drive current density of 10 mA cm−2, with corresponding Tafel slopes of 163.9 and 60.3 mV·dec−1 in 30% KOH medium, respectively. Moreover, NiFeCMo film only needs a low cell voltage of 1.61 V to drive current density of 10 mA cm−2 in an alkaline electrolyzer. Such remarkably HER and OER properties of NiFeCMo alloy is attributed to the increased effective electrochemically active surface area and the synergy effect among Ni, Fe, C and Mo.  相似文献   

20.
Developing an efficient and inexpensive electrocatalyst is of paramount importance for realizing the green hydrogen economy through electrocatalytic water splitting. Here, we demonstrated a facile large-scale, industrially viable binder-free synthesis of Zn-doped NiS electrocatalyst on bare nickel foam (NF) through a hydrothermal technique. The present catalyst, i.e., nickel sulfide (NiS) nanosheets on nickel foam with optimized doping of Zn atom (Zn–NiS-3), displays excellent catalytic efficacy for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). It requires an overpotential of 320 mV for OER at a current density of 50 mA cm−2 and an overpotential of 208 mV for HER at a current density of 10 mA cm−2. The water electrolyser device having Zn–NiS-3 electrocatalyst as both cathode and anode show excellent performance, requiring a cell voltage of only 1.71 V to reach a current density of 10 mA cm−2 in an alkaline media. The density functional theory (DFT) based calculations showed enhanced density of states near Fermi energy after Zn doping in NiS and attributed to the enhanced catalytic activities. Thus, the present study demonstrates that Zn–NiS-3@NF can be coined as a viable electrocatalyst for green hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号