首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Inorganic and Organometallic Polymers and Materials - The present study addresses a successful attempt to promote the photocatalytic reduction of mercury ions (Hg2+) over the synthesized...  相似文献   

2.
介绍了包括ZnIn2S4的形貌控制、表面贵金属沉积、金属离子掺杂、复合半导体、碳类似物修饰以及导电聚合物修饰在内的几种ZnIn2S4的改性方法,叙述了各改性技术实例及其作用机理。分析表明,通过对单组份ZnIn2S4的改性,不仅可明显提高电子的传输能力,而且表现出更宽的可见光吸收区间,提升了其光催化性能。认为ZnIn2S4的改性在污染物降解以及光催化产氢效率的提升等方面具有重大意义。提出改善ZnIn2S4长期稳定性及推动其应用过程是今后研究的重点,以期应用于实际技术中。  相似文献   

3.
4.
Topics in Catalysis - In this research, graphitic carbon nitride (g-C3N4) photocatalysts were synthesized through a simple calcination process at various temperatures, which were 400, 500, 550, and...  相似文献   

5.
文章中,采用两步法合成了g-C_3N_4-SnO_2复合物。首先,通过热缩聚三聚氰胺来合成g-C_3N_4,再利用水热法合成不同质量比的g-C_3N_4-SnO_2复合光催化剂。利用X射线衍射(XRD),红外光谱(FT-IR),场发射扫描电子显微镜(FE-SEM)和紫外可见漫反射(UV-Vis-DRS)等手段对复合光催化剂进行表征。通过在可见光下检测降解亚甲基蓝(MB)水溶液来评估复合光催化剂的光催化活性。结果表明:复合光催化剂由SnO_2和g-C_3N_4组成,其在可见光区的吸收比纯SnO_2和g-C_3N_4有所提高。随着g-C_3N_4在复合物中含量的增多,光催化活性先增加后降低。其中g-C_3N_4含量为71.5%的复合物光催化活性最佳。其对MB的降解可达到34.4%。分别是纯g-C_3N_4和SnO_2的7.0和10.4倍。并且,通过对目标污染物亚甲基蓝的考察,研究了其光催化作用的机理。  相似文献   

6.
微波辅助液相法制备了g-C3N4–Ce O2/凹凸棒石(ATP)复合光催化材料。采用X射线衍射仪、Fourier变换红外光谱仪、紫外-可见漫反射光谱仪、透射电子显微镜等对样品微观结构进行表征,以亚甲基蓝(MB)为目标降解物考察g-C3N4–Ce O2/ATP复合材料在可见光辐射下的催化活性,研究Ce O2/g-C3N4质量比对光催化剂活性的影响。结果表明:ATP与Ce O2和g-C3N4形成三维网络结构,能有效地增加复合光催化剂的表面积,在空间上形成多渠道的电子传递通道,促进光生载流子的分离。当Ce O2/g-C3N4质量比为3/10时,g-C3N4–Ce O2/ATP复合材料对MB的降解率可达92%。  相似文献   

7.

The g-C3N4 nanosheet was prepared by calcination method, the MoS2 nanosheet was prepared by hydrothermal method. The g-C3N4/MoS2 composites were prepared by ultrasonic composite in anhydrous ethanol. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, and photoluminescence techniques were used to characterize the materials. The photocatalytic degradation of Rhodamine B (Rh B) by g-C3N4/MoS2 composites with different mass ratios was investigated under visible light. The results show that a small amount of MoS2 combined with g-C3N4 can significantly improve photocatalytic activity. The g-C3N4/MoS2 composite with a mass ratio of 1:8 has the highest photocatalytic activity, and the degradation rate of Rh B increases from 50 to 99.6%. The main reason is that MoS2 and g-C3N4 have a matching band structure. The separation rate of photogenerated electron–hole pairs is enhanced. So the g-C3N4/MoS2 composite can improve the photocatalytic activity. Through the active material capture experiment, it is found that the main active material in the photocatalytic reaction process is holes, followed by superoxide radicals.

  相似文献   

8.
Currently, the synthesis of active photocatalysts for the evolution of hydrogen, including photocatalysts based on graphite-like carbon nitride, is an acute issue. In this review, a comprehensive analysis of the state-of-the-art studies of graphic carbon nitride as a photocatalyst for hydrogen production under visible light is presented. In this review, various approaches to the synthesis of photocatalysts based on g-C3N4 reported in the literature were considered, including various methods for modifying and improving the structural and photocatalytic properties of this material. A thorough analysis of the literature has shown that the most commonly used methods for improving g-C3N4 properties are alterations of textural characteristics by introducing templates, pore formers or pre-treatment method, doping with heteroatoms, modification with metals, and the creation of composite photocatalysts. Next, the authors considered their own detailed study on the synthesis of graphitic carbon nitride with different pre-treatments and respective photocatalysts that demonstrate high efficiency and stability in photocatalytic production of hydrogen. Particular attention was paid to describing the effect of the state of the platinum cocatalyst on the activity of the resulting photocatalyst. The decisive factors leading to the creation of active materials were discussed.  相似文献   

9.
以溴代十六烷基吡啶(CPBr)为模板剂,采用水热法制备出系列Mn2+掺杂的ZnIn2S4多孔光催化剂.通过XHD、FESEM、UV-Vis、XPS等分析手段对催化剂进行了表征,考察了掺杂Mn2+浓度对多孔ZnIn2S4光催剂的形貌结构和可见光催化产氢性能的影响.实验结果表明,Mn2+掺杂影响催化剂的晶体结构及其微观形貌...  相似文献   

10.
Herein, Zn3In2S6 photocatalyst with (110) exposed facet was prepared by low temperature solvothermal method. On this basis, a highly efficient binary Zn3In2S6/g-C3N4 was obtained by low temperature solvothermal method and applied to the degradation of tetracycline (TC). The samples of the preparation were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, UV–vis diffuse reflection spectroscopy, and photoluminescence spectroscopy. Furthermore, the degradation performance of photocatalysts on TC was investigated under different experimental conditions. Finally, the mechanism of Zn3In2S6/g-C3N4 composite material degrading TC is discussed. The results show that Zn3In2S6 and Zn3In2S6/g-C3N4 photocatalysts with excellent performance could be successfully prepared at lower temperature. The Zn3In2S6/g-C3N4 heterojunction photocatalyst could significantly improve the photocatalytic activity compared with g-C3N4. After 150 min of illumination, the efficiency of 80%Zn3In2S6/g-C3N4 to degrade TC was 1.35 times that of g-C3N4. The improvement of photocatalytic activity was due to the formation of Zn3In2S6/g-C3N4 heterojunction, which promoted the transfer of photogenerated electron–holes. The cycle experiment test confirmed that Zn3In2S6/g-C3N4 composite material had excellent stability. The free radical capture experiment showed that ·O2 was the primary active material. This study provides a new strategy for the preparation of photocatalysts with excellent performance at low temperature.  相似文献   

11.
The rational design of hierarchical heterojunction photocatalysts with efficient spatial charge separation remains an intense challenge in hydrogen generation from photocatalytic water splitting. Herein, a noble-metal-free MoS2/g-C3N4/ZnIn2S4 ternary heterostructure with a hierarchical flower-like architecture was developed by in situ growth of 3D flower-like ZnIn2S4 nanospheres on 2D MoS2 and 2D g-C3N4 nanosheets. Benefiting from the favorable 2D-2D-3D hierarchical heterojunction structure, the resultant MoS2/g-C3N4/ZnIn2S4 nanocomposite loaded with 3 wt% g-C3N4 and 1.5 wt% MoS2 displayed the optimal hydrogen evolution activity (6291 μmol g?1 h?1), which was a 6.96-fold and 2.54-fold enhancement compared to bare ZnIn2S4 and binary g-C3N4/ZnIn2S4, respectively. Structural characterizations reveal that the significantly boosted photoactivity is closely associated with the multichannel charge transfer among ZnIn2S4, MoS2, and g-C3N4 components with suitable band-edge alignments in the composites, where the photogenerated electrons migrate from g-C3N4 to ZnIn2S4 and MoS2 through the intimate heterojunction interfaces, thus enabling efficient electron-hole separation and high photoactivity for hydrogen evolution. In addition, the introduction of MoS2 nanosheets highly benefits the improved light-harvesting capacity and the reduced H2-evolution overpotential, further promoting the photocatalytic H2-evolution performance. Moreover, the MoS2/g-C3N4/ZnIn2S4 ternary heterostructure possesses prominent stability during the photoreaction process owing to the migration of photoinduced holes from ZnIn2S4 to g-C3N4, which is deemed to be central to practical applications in solar hydrogen production.  相似文献   

12.
以尿素为前躯体,于管式炉中进行高温煅烧,借助X射线衍射、电镜扫描手段对产物进行表征,以罗丹明B为污染物,对所得产物的可见光催化性能进行评价,同时考察不同负载量、不同煅烧温度和煅烧时间对光催化活性的影响。结果表明,500~600℃煅烧3 h所得负载量为60%的g-C_3N_4/AC可见光催化活性最强。  相似文献   

13.
Topics in Catalysis - The present work reports a facile strategy to develop L-arginine mediated Zn doped graphitic carbon nitride (g-C3N4) and its enhanced photocatalytic activity. The...  相似文献   

14.
Liu  Yuxiang  Xu  Xuejun  Li  Hewen  Si  Zhichun  Wu  Xiaodong  Ran  Rui  Weng  Duan 《Catalysis Letters》2022,152(4):972-979
Catalysis Letters - Noble metal-free MoS2/g-C3N4 photocatalysts have been synthetized by one step thermal treatment of thiourea and sodium molybdate, which has intimate contact interfaces between...  相似文献   

15.
采用缩聚法合成了类石墨氮化碳(g-C3N4),并与商品ZnO复合得到新型复合光催化剂g-C3N4/ZnO。采用XRD、SEM和UV-vis DRS对催化剂进行了表征。以300 W的卤钨灯为光源(λ>420 nm),以罗丹明B(RhB)为目标降解物进行了光催化实验。结果表明,与单纯的ZnO和g-C3N4相比,g-C3N4/ZnO复合催化剂的光催化性能有所提高,其中g-C3N4含量为7.0 wt%时光催化性能最好。  相似文献   

16.
《Ceramics International》2021,47(21):30194-30202
Transition bimetallic sulfides have attracted widespread attention because of their superior electrochemical characteristics compared to their parent materials. Herein, ternary ZnCo2S4 was deposited on g-C3N4 (CN) to enhance the photocatalytic water splitting reactivity of CN. The hydrogen (H2) evolution rate of 25 wt%-ZnCo2S4/CN reached 6619 μmol h−1 g−1, which was 55.2 times higher than that of CN alone. Under the same conditions, ZnS/CN and Co3S4/CN were also synthesized, and their H2 evolution rates were both inferior to that of ZnCo2S4/CN. Investigations showed that the presence of both zinc and cobalt ions in ZnCo2S4 lowered the H2 evolution overpotential and charge recombination rate, leading to excellent H2 release activity. In addition, the composite maintained its activity even after reacting for 20 h, and the charge transfer mechanism between ZnCo2S4 and CN was subject to the S-scheme charge transfer route according to trapping experiments for active species. This work revealed a promising and efficient bimetallic sulfide heterojunction to enhance H2 evolution during water splitting and thus achieved improved conversion efficiency for solar energy applications.  相似文献   

17.

Mesoporous single-crystalline perovskite YFeO3 nanoparticles was synthesized through a soft template-assisted approach. Mesoporous YFeO3 NPs were decorated porous g-C3N4 nanosheets with variation YFeO3 NPs percentages, and the newly synthesized photocatalysts were assessed towards Hg(II) reduction and HCOOH oxidation in aqueous solution upon visible light exposure. XRD and HR-TEM revealed the formation of single-crystalline orthorhombic YFeO3 with uniformly dispersed and the average particle size of 10?±?5 nm, thereby constructing a mesoporous YFeO3/g-C3N4 heterojunctions for the promotion of the photocatalytic performances compared to bare YFeO3 NPs and g-C3N4. 3% YFeO3/g-C3N4 heterostructure revealed the highest and optimum Hg(II) reduction (100%) within 60 min, which determined 3.7 and 5 times larger than of bare YFeO3 NPs and g-C3N4 obeyed by pseudo-first-order kinetics. The YFeO3/g-C3N4 photocatalyst could be recycled five continuous cycles and kept remarkable photostability for long time illumination. The superior Hg(II) reduction over mesoporous YFeO3/g-C3N4 heterojunction is referred to as lower recombination of carriers, the unique electronic structure, higher visible light utilization and high surface area. This work focused on constructing the YFeO3/g-C3N4 heterojunction, indicating outstanding photocatalytic performances in a facile route.

  相似文献   

18.
石墨相氮化碳(g-C3N4)禁带宽度约为2.7 eV,具有可见光响应能力。由于其良好的热和化学稳定性,且形貌和化学结构可调,在光催化领域应用广泛。但由于其带隙宽,对可见光响应范围窄,且光生载流子的复合率高,导致其光催化效率低,可通过改性来改善。本文综述了对g-C3N4形貌调控、掺杂和构建异质结等改性策略,以及g-C3N4/Ti3C2异质结的作用机理、制备方法和在光催化析氢、有机物降解及合成等领域的应用。  相似文献   

19.
Graphite phase carbon nitride (g-C3N4) is a kind of metal-free semiconductor material with a forbidden band width of about 2.7 eV and has visible light response capability. Attributed to its good thermal and chemical stability, adjustable morphology and chemical structure, it is widely used in the field of photocatalysis. However, due to its low specific surface area and wide band gap, its response range to visible light is narrow and the recombination rate of photogenerated carriers is high, resulting in a low photocatalytic efficiency, which can be effectively improved by modification. The two-dimensional material Ti3C2 has a narrower band gap compared with other semiconductor materials, and the heterogeneous junction between Ti3C2 and g-C3N4 is expected to obtain a wider range of visible light absorption and higher photocatalytic efficiency. This article reviews the modification methods of g-C3N4 including morphology control, doping and constructing heterojunctions, as well as the action mechanism, preparation methods and applications of g-C3N4/Ti3C2 heterojunction in photocatalytic hydrogen evolution, organics degradation and synthesis, etc.  相似文献   

20.
《Ceramics International》2021,47(18):26063-26073
In this contribution, a Z-scheme mesoporous BiVO4/g-C3N4 nanocomposite heterojunction with a considerable surface area and high crystallinity was synthesized by a simple soft and hard template-assisted approach. This material demonstrates superior visible light-driven photocatalysis for the photoreduction of Hg(II) ions. TEM and XRD results show that the mesoporous BiVO4 NPs, with a monoclinic phase and an ellipsoid-like shape, are highly dispersed onto the porous 2D surfaces of g-C3N4 nanosheets with a particle size of 5–10 nm. The obtained BiVO4/g-C3N4 nanocomposites with a p-n heterojunction show significantly enhanced Hg(II) photoreduction efficiency compared to the mesoporous BiVO4 NPs and pristine g-C3N4. Among all synthesized photocatalysts, the 1.2% BiVO4/g-C3N4 nanocomposite indicated the highest photoreduction of Hg(II) performance, reaching ~ 100% within 60 min; this result is 3.9 and 4.5 –fold larger than that of the BiVO4 NPs and pristine g-C3N4. The Hg(II) photoreduction rates highly increase to 208.90, 314.95, 411.23 and 418.68 μmol g−1min−1 for the mesoporous 0.4, 0.8, 1.2 and 1.6% BiVO4/g-C3N4 nanocomposites, respectively. The reduction rate of the mesoporous 1.2% BiVO4/g-C3N4 nanocomposite demonstrated a 5.2 and 3.8 times larger increase than that of the pristine g-C3N4 nanosheets and pure BiVO4 NPs. The superior Hg(II) photoreduction efficiency was ascribed to decreased carrier recombination and the improved utilization of visible light by constructing BiVO4/g-C3N4 nanocomposites with a p-n junction. Transient photocurrent measurement and photoluminescence spectra were employed to confirm the possible Hg(II) photoreduction mechanism over these BiVO4/g-C3N4 photocatalysts. This research provides an accessible route for the nanoengineered design of mesoporous BiVO4/g-C3N4 heterostructures that demonstrated unique photocatalytic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号