首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing active corrosion protection coatings for metals and alloys is one of the important issues for several industries. The present study aimed to assess the corrosion protection efficiency of 2024 aluminium alloy (AA2024) by employing surfactant modified silica nanocontainers capable of releasing entrapped corrosion inhibitors in a controllable manner. Inhibitor loaded silica nanocontainers were synthesised by layer-by-layer (LbL) deposition of surfactants and corrosion inhibitor on silica nanoparticles. The LbL deposition process was confirmed by light scattering (Zetasizer) and UV-vis spectroscopy results. The kinetic assessments of the inhibitor release from nanocontainers showed increasing acidity and temperature increases concentration of inhibitors. The anti-corrosion assessments including low corrosion current density and other electrochemical parameters of paint coating doped with 5 wt-% nanocontainers on the AA2024 revealed beneficial effect of inhibitor loaded nanocontainers on passive and active corrosion protection.  相似文献   

2.
Hybrid organic–inorganic sol–gel-matrices, with up to 20 wt.% incorporated ceria nanoparticles, have been employed as coatings for an AA2024-T3 aluminium alloy. The morphology of the coatings and associated nanoparticles has been examined by conventional and high-resolution transmission electron microscopy, revealing a relatively uniform distribution of 5 nm size nanoparticles across the coating thickness. Electrochemical studies indicate a general beneficial effect of incorporation of ceria nanoparticles, although the performance of the coated alloy depends on the nanoparticle content. Electrochemical polarisation behaviour revealed that the coating decreased the anodic current density by about seven orders of magnitude compared with the uncoated alloy, with high breakdown potentials in chloride-containing solution. Accelerated salt spray testing showed that corrosion in an artificial scratch is blocked most efficiently by high ceria contents, whereas general corrosion is inhibited effectively with comparatively low ceria contents. Electrochemical impedance spectroscopy indicated degradation of the barrier properties of coatings with increased amounts of incorporated nanoparticles. Assessment of the abrasion and scratch resistance, and hydrophobicity also revealed additional beneficial functional properties of the coatings containing nanoparticles.  相似文献   

3.
The effects of a pretreatment process on the formation and properties of lanthanum based conversion coatings on AA2024-T3 was investigated using optical and scanning electron microscopy (SEM), X-ray diffraction (XRD) and open circuit potential (OCP) measurements. The results indicate that the conventional alkaline activation pretreatment with acidic desmutting could not create a suitable condition to produce lanthanum based conversion coating on AA2024-T3. Therefore, in this study, a new approach to produce lanthanum based conversion coating on AA2024-T3 by acidic pretreatment is proposed. The pretreatment of the alloy in acidic and chloride environments (90 s at 30 vol % HCl) creates more cathodic sites on AA2024-T3 compared to alkaline activation with acidic desmutting. Additionally, it was found that the formation stages of lanthanum based conversion coating is similar to those of cerium based conversion coating on AA2024-T3 except lanthanum ions require more localized pH increase to deposit on the alloy.  相似文献   

4.
The discovery of new corrosion inhibition systems remains dependent on experimental methods for screening and characterization. This paper examines a new method to rapidly assess aluminium alloy corrosion and inhibitor performance through quantification of aluminium ion concentration using fluorometric probes. The fluorometric probes, lumogallion and morin, were used in conjunction with a plate reader to rapidly assess fourteen corrosion inhibitors and their combinations for AA2024-T3. AA2024-T3 wire electrodes were exposed to 3.4 mM total inhibitor concentration in 0.6 M NaCl adjusted to pH 2, 4, 7, 10, and 12 for 1-7 days. Corrosion inhibition provided by mixtures of lanthanum and molybdate, cerium and molybdate, and metavanadate with phosphate was found to be superior to the equivalent concentration of sodium chromate.  相似文献   

5.
The mechanism of deposition of cerium-based conversion coatings and the influence of Al3+ ions was modeled using titrations of cerium-based conversion coating solutions with and without added Al3+ ions. Precipitates resulting from these titrations were characterised by Raman spectroscopy and thermogravimetric analysis. Cerium peroxo species and precipitated aluminium compounds were detected in the precipitates. The titrations indicated that cerium and aluminium compounds precipitate independently. The coating deposited onto AA2024-T3 was studied using Raman spectroscopy and optical and scanning electron microscopy. Similar species were observed to those in the precipitates. Changes to the properties of the coating during ageing were monitored using contact angle measurements and Raman spectroscopy. A model is presented that proposes a mechanism for the deposition of the coating over the matrix of AA2024-T3.  相似文献   

6.
The role of pre-treatment in the formation of a cerium conversion coating is investigated for the protection of AA2024-T3 and 7075-T6 alloys. The alloys were alkaline-etched and de-smutted in nitric acid, prior to cerium treatment in Ce(NO3)3 at 85 °C with H2O2 accelerator. Potentiodynamic polarization studies in 3.5% NaCl solution revealed a large shift of  300 mV of the corrosion potential below the pitting potential for the 7075-T6 alloy, which correlated with the development of a finely-textured, uniform coating. However, the formation of a uniform coating and protection was dependent upon the time of de-smutting, with non-uniform coatings resulting from extended times of de-smutting. In contrast, non-uniform coatings developed on the 2024-T3 alloy, with pitting potential at the corrosion potential, irrespective of the time of de-smutting. Findings for the 2024-T3 alloy indicate that extended de-smutting affects the enrichment of alloying elements.  相似文献   

7.
This paper examines a new method developed for the rapid assessment of corrosion inhibitors and their combinations for aluminium alloy 2024-T3 (AA2024-T3). Two fluorometric probes, lumogallion and morin, were used to rapidly assess the concentration of aluminium ions in solution through the use of a spectrophotometric plate reader. Fourteen potential inhibitor compounds and other assay constituents were screened for fluoroprobe interference: sodium chromate, sodium metavanadate, cerium chloride, lanthanum chloride, europium chloride, gadolinium chloride, neodymium chloride, yttrium chloride, barium metaborate, sodium metatungstate, potassium phosphate, sodium metasilicate, sodium phosphate, and sodium molybdate. Calibration curves were established for the two probes.  相似文献   

8.
Cerium malate (CeMal) was tested as a corrosion inhibitor for AA2024-T3 in this work. Corrosion inhibition on bare AA2024-T3 indicated that the inhibiting effect was a result of the synergistic effect of cerium cations and maleic anions. The corrosion of AA2024-T3 was stagnated by greatly reducing the corrosion current when CeMal was present in NaCl solutions. CeMal was adsorbed on the surface of AA2024-T3 forming a protective film in the initial stage. Then, cerium cations transformed to cerium oxide/hydroxides, precipitating on the cathode sites to inhibit the further corrosion. The electrochemical impedance spectra results of the sol-gel coatings proved that CeMal was an effective corrosion inhibitor in the sol-gel coatings to provide corrosion protection for AA2024-T3.  相似文献   

9.
A high-throughput test has been developed for screening aqueous corrosion inhibitors on aluminium AA2024-T3. The method adapts basic microfluidic technology to create multiple channels in polydimethylsiloxane, which allow solutions to flow over the surface of the alloy, causing severe corrosion within hours if no inhibitor is present. In three-channel experiments under various channel conditions, corrosion rates were accelerated up to 15 times when compared to standard immersion tests. In addition, 10-channel experiments were conducted to simultaneously test 10 different inhibitors, and the results were compared visually and to actual corrosion results obtained quantitatively via solution analyses.  相似文献   

10.
Finding eco-efficient and environmentally viable alternatives to chromate coatings represents a fundamental milestone in the aerospace industry. Here, we show a chromate-free approach to protective hybrid coatings on aluminium alloy (AA2024-T3) departing from photoinduced sol–gel and cationic polymerizations. Beginning with a film of n-alkyltrimethoxysilane and diepoxy monomer, we rely on photogenerated superacids to induce the single step formation of two inorganic and organic barrier networks. Such system combines the unique aspects of photopolymerization including fast reactions, temporal control, solvent-free composition and temperature independence. Used without chemical conversion coating or anodizing, some films have passed 2000 h of salt spray testing.  相似文献   

11.
采用多种电子显微技术对AA2024-T3航空铝合金的局部腐蚀行为进行研究。结果表明:AA2024-T3铝合金的局部腐蚀主要以晶间腐蚀的形式出现,相对于晶界沉淀相,晶格储存能更为显著地影响晶间腐蚀的发展,促使其优先发生在晶格储存能更高的晶粒周围。研究结果有助于提高对航空铝合金晶间腐蚀机理的认识,并为航空铝合金的设计提供理论指导,对保障航空安全具有重要意义。  相似文献   

12.
In order to characterise filiform corrosion on a commercial AA2024-T351 aluminium alloy, a detailed microscopical study using SEM and EDS was performed. One set of AA2024-T351 aluminium alloy samples was alkaline-cleaned and deoxidised and chromate conversion coated. Another set was alkaline-cleaned only. Both samples were similarly spray coated with a 42 μm clear polyurethane topcoat. Filaments were subjected to a range of specimen preparation techniques. Sections and top views examined by SEM revealed varying degrees of attack ranging from generalised etching without local attack to severe local attack in the form of pitting, resulting in grain etchout, grain boundary attack and subsurface etchout. EDS revealed the presence of chloride deep into the pits and the subsurface etchout.  相似文献   

13.
In Part I it was demonstrated that the deposition of Ce-based conversion coatings onto the matrix of AA2024-T3 was well modeled by titrations of the Ce-coating solution with added Al3+ ions. In Part II the coating composition over the surface was imaged with Raman spectroscopy and X-ray elemental mapping. Multivariate analysis was used to interpret variance in the X-ray elemental maps. The coating composition was found to be determined by the underlying microstructure of the alloy. The microstructure is dominated by the distribution of Cu resulting from enrichment as a consequence of anodic etching of the matrix and dealloying of intermetallic particles, principally Al2CuMg during coating. A model is presented that proposes two mechanisms for the deposition of the coating. For the matrix, coating deposition can be explained on the basis of a pH rise in the adjacent solution analogous to precipitation from solution during titration as described in Part I. For the rest of the coating, the mechanism of deposition is dictated by the heterogeneous surface of AA2024-T3.  相似文献   

14.
《金属精饰学会汇刊》2013,91(3):125-129
Abstract

The formation of chromate/fluoride conversion coatings is investigated for binary Al–2·3 at.-%Cu alloy and AA 2014-T6 aluminium alloy in order to determine the influences of copper on coating development. Copper is shown to cause detachment of the coating layer after a particular time of coating. The time of detachment is reduced with increase in the concentration of copper in solid solution in the various alloy regions. Therefore, a thicker layer of coating material can develop on the copper depleted matrix regions of AA 2014-T6 alloy compared with that on the copper rich intermetallic particles. The detachment occurs following enrichment of copper in the alloy during the initial stages of formation of the coating, with the main layer of hydrated chromia detaching from close to the alloy surface. Following detachment, subsequent thickening of the coating is restricted. It is suggested that this behaviour is related to the incorporation of nanoparticles of copper into the coating.  相似文献   

15.
The corrosion pathways in AA2024-T3, AA5083-O and AA6082-T6 alloys have been investigated. The objective of the investigation is to further the understanding of the complex localised corrosion mechanism in aluminium alloys. The investigation was carried out by examining the corroded surfaces of the alloys after potentiodynamic polarization tests in a 3.5% NaCl solution with the aid of a scanning electron microscope, and by analysing the flow of anolyte solution using the scanning vibrating electrode technique. The results revealed that the overall corrosion pathways in the alloys are distinctively different and are influenced by the flow of anolyte solution. Also revealed, was the fact that corrosion propagates in two ways (particularly in the AA5083-O and AA6082-T6 alloys): an overall pathway in the corrosion front (filiform-like pathway in the AA5083 alloy and organized linear pathways in AA6082 alloy); and the crystallographic channelling along the 〈100〉 directions. These are dependent on the grain distinct features of the AA5083-O and AA6082-T6 alloys and are not influenced by the presence of coarse second phase particles in these alloys, compared with the AA2024-T3 alloy, where the corrosion pathways are more dependent on the presence of second phase particles and grain boundary character.  相似文献   

16.
自愈合涂层能够一定程度地修复表面涂层的损伤,延长涂层的使用寿命,因此,广泛应用于镁合金表面处理领域。结合经典的自愈合涂层模型和理论,综述了镁合金表面自修复涂层的最新相关研究成果。铬酸盐转化膜是一种最典型的化学转化膜,其利用修复剂之间的化学反应来达到修补涂层损伤的目的,工艺简单,容易实现,但其修复涂层效果极大地受到修复剂填埋量的影响。以微囊微管为代表的微容器型自愈合涂层进一步丰富了自愈合涂层的设计理念,但因其工艺相对复杂、缓蚀剂装载量有限等问题也颇受限制,而利用多孔材料装载修复剂的等类微容器涂层是近期比较新颖的涂层设计思路。最新的研究工作则主要围绕多功能化的自修复复合涂层展开,自愈合效果往往只是复合涂层的一部分功能,也不再是对于涂层本身的修复,而更加注重利用涂层本身与腐蚀产物的共同作用达到对涂层功能的修复;无机类与聚合物类修复剂复合使用,共同增强自愈合效果。另外,根据实际应用条件设计的触发式自愈合,更贴近现实。  相似文献   

17.
Use of organic-inorganic hybrid sol-gel thin films is recently reported among the most promising approaches for the replacement of chromate based pre-treatment methods for high strength structural aluminium parts.To be applied in the aerospace industry, pre-treatments have to meet the demanding requirements and must be compatible to state of the art paint systems. The addition of inhibitive species is desirable for the active corrosion protection and the prevention of sub-surface migration at defect sites of the coating.In the present work hybrid films were produced by the controllable sol-gel route. Corrosion inhibitors were incorporated to the coatings in order to provide active protective effect. The barrier properties and the active corrosion protection on AA2024-T3 have been studied by Electrochemical Impedance Spectroscopy and Scanning Vibrating Electrode Technique. The obtained results were proven by conventional accelerated tests such as neutral salt spray test confirming validity of the mentioned electrochemical techniques for the evaluation of protection efficiency of hybrid sol-gel films.The addition of inhibitors to sol-gel coatings in most cases leads to an improvement of the active corrosion protection but on the other hand it may negatively influences the barrier properties of the films. Therefore, encapsulation of the inhibiting compounds is beneficial in order to combine the good barrier function of the coating with the corrosion mitigating effect of the inhibitors.  相似文献   

18.
Optically transparent silica-based single amorphous phase organic-inorganic hybrid coating materials with differing organic/inorganic ratios have been prepared by a novel patented sol-gel process and deposited using a simple angled flow coating method on commercially pure aluminium substrates. Transmission electron microscopy and scanning electron microscopy were used to characterise the microstructures of the hybrid materials and the quality of the interfaces between the coatings and the aluminium substrates. The scratch resistance, critical load to failure and failure modes of these hybrid coating materials were studied using a simple scratch test. The coatings produced were all shown to adhere well to the aluminium substrates and exhibit good levels of scratch resistance.  相似文献   

19.
The temperature generated by friction and plastic deformation in the secondary shear zone strongly controls tool wear. At lower cutting speeds tool wear is not severe insofar as the temperature is not significant. When the cutting speed is increased, there is a transition in wear mechanisms from abrasion and/or adhesion to diffusion. In the present paper, the change in wear mechanisms as a function of cutting speed and coating material is discussed. The cutting tests were performed on a rigid instrumented drilling bench without the use of cutting fluids. AA2024 aluminium alloy was used to investigate the wear mechanisms of cemented tungsten carbide and HSS tools. Three cutting speeds (25, 65 and 165 m/min) and a constant feed rate of 0.04 mm/rev were selected for the experiments. The best results in terms of maximum and minimum hole diameter deviations and surface roughness are obtained for the uncoated and coated tungsten carbide drills. The results also show that HSS tool is not suitable for dry machining of AA2024 aluminium alloy.  相似文献   

20.
The effect of hard anodic oxide and plasma electrolytic oxide coatings on the fatigue strength of 7475-T6 aluminium alloy has been investigated. The coated aluminium alloy was tested using constant load uniaxial tensile fatigue machine. Hard anodising led to an appreciable reduction in the fatigue strength of 7475-T6 alloy of about 75% for a 60 μm thick coating. Further, plasma electrolytic oxidation resulted in reduction of the fatigue strength of about 58% for a 65 μm thick oxide coating. The decrease in fatigue strength of the hard anodic oxide coatings was associated with the stress concentration at the microcracks in the coating. The better fatigue performance of the PEO coatings was attributed to the development of the compressive residual internal stress within the coatings. The reduction in the fatigue strength of the PEO coatings as compared to the uncoated material was associated with the development of the tensile residual internal stress within the substrate. This may cause an early crack initiation in the substrate adjacent to the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号