首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
显微组织对Cu—Cr—Ni合金高温氧化行为的影响   总被引:2,自引:1,他引:1  
研究了两种单/双相Cu-Cr-Ni合金的高温氧化行为。结果表明,合金氧化动力学偏离抛物线规律,其瞬时抛物线速率常数随时间延长而降低。两种合金表面氧化膜的结构差别较大,单相合金表面形成-连续的Cr2O3层,双相合金表面氧化膜外层是一边疆的CuO层,Ni和Cr的氧化发生在合金内部,这种合金与氧化物共存的混合内氧化与经典的内氧化明显不同,氧化层最里面形成了一连续的CrO3膜,抑制了合金的进一步氧化。  相似文献   

2.
晶粒尺寸对Cu-60Ni合金高温氧化行为的影响   总被引:3,自引:0,他引:3  
研究了铸态Cu-60at%Ni(CACu-60Ni)和机械合金化制 备的纳米晶Cu-60at%Ni(MACu-60Ni)合金在800℃空气中的氧化行为.结果表明:CACu-60Ni 合金的氧化动力学偏离抛物线规律,形成外层为CuO,内层为疏松、多孔的Cu2O和NiO混合 氧化物层,同时沿合金基体发生了Ni的内氧化;MACu-60Ni合金的氧化动力学近似遵循抛物 线规律,合金表面氧化膜外层为很薄一层CuO,内层为较厚,且均匀致密的NiO层.晶粒细化 明显促进了由Cu2O和NiO混合氧化膜向单一连续NiO膜的转变.讨论了合金的氧化机制.  相似文献   

3.
采用电弧熔铸和机械合金化+热压烧结技术制备晶粒尺寸相差较大的Cr-25Nb合金,研究其在950及1200 ℃空气中的氧化行为。结果表明,熔铸态及机械合金化Cr-25Nb合金氧化后均没有发生Cr的单一外氧化,而形成了以Cr2O3为外层、NbCrO4为内层的双层氧化膜结构;机械合金化Cr-25Nb合金在950及1200 ℃的氧化速度均小于熔铸态合金,特别是在1200 ℃氧化100 h后,熔铸态Cr-25Nb合金的氧化增重是机械合金化合金的2倍多。这主要是因为晶粒细化促进了氧化膜内应力的释放,提高了氧化膜与基体的粘附性  相似文献   

4.
Abstract

Three nickel base alloys strengthened by different hardening effects were investigated by thermogravimetry in air under isothermal conditions. The alloys investigated were γ′-Ni3 (Al, Ti)-hardening alloy 80A (75Ni, 21Cr, 2·5Al, 1·7Ti, DIN No. 2·4952),solid solution hardened alloy C22 (59Ni, 21Cr, 13Mo, 3·5 Fe, 2·8W, DIN No. 2·4602) and a new high nitrogen containing and nitride hardening alloy N (61Ni, 27Cr, 10W, 1·4Ti, 0.2N). Tests were conducted in air between 900 and 1100° C for 48 h. Parabolic oxidationrates were determined and the formation of the oxide layer was investigated by optical microscopy and SEM. Oxidation data showed that the hardening mechanism has almost no influence on the oxidation kinetics. All of the alloys investigated formed chromia layers. After initial transient stateoxidation, the kinetics followed a parabolic law. Alloy 80A had the highest oxidation rate of the investigated alloys, which is attributed first to its lower chromium content and second to the formation of chromium carbides. At grain boundaries, internal oxidation, mainly of aluminium andtitanium, took place. The Al and Ti contents of alloy 80A were too low for the formation of a protective inner oxide layer of one of the two elements to take place. Alloy C22 showed the best resistance to oxidation since its chromium content of 21% is close to that for the minimum in the kineticsof oxide formation that has been found for binary Ni–Cr alloys. Additionally, there were no chromium rich precipitates to shift this chromium content to values that would result in higher oxidation rates. The nitride-containing alloy N contained a higher chromium content of 26%, whichled to a higher oxidation rate than that for alloy C22. A certain amount of inner oxidation took place, especially at coarse Cr2N precipitates. Conclusions are presented about the optimised chemical composition of chromia laye-forming nickel base alloys for minimised oxidationrate.  相似文献   

5.
Abstract

A Ni based SY 625 alloy was oxidised at 900, 1000 and 1100°C under dry and wet conditions. Water vapour has little effect on the oxidation rate and scale composition. At 900 and 1000°C, the outer scale is composed of Cr2O3, and a continuous NbNi4–Ni3Mo subscale is found at the oxide/alloy interface. At 1100°C, the scale is composed of an outer chromia scale and an internal CrNbO4 subscale. Nevertheless, the oxide scale morphology differs between dry and wet conditions. Under dry conditions, the oxide scale appears to be compact, and chromia pegs are observed at the internal interface. The oxide scales formed under wet conditions show that porosities spread inside the scale, and the chromia grain size is smaller. At 1100°C, some scale spallation is observed under dry and wet conditions probably due to the molybdenum oxidation, leading to MoO3 evaporation and void accumulation at the internal interface.  相似文献   

6.
The oxidation behavior of thin layers of two Cu-Fe alloys containing 25 and 50 wt.% Fe, respectively, prepared by magnetron sputtering deposition on cast alloys of the same composition (Cu-Fe coatings) and presenting grain sizes in the nanometer range, was studied at 600-800 °C in air to examine the influence of the reduction in the grain size on the selective oxidation of the most reactive component in two-phase binary systems. A continuous Fe3O4 layer formed beneath an external region of copper oxide on the Cu-25Fe coating, whereas an external iron oxide scale mostly composed of Fe3O4 free from copper oxides formed on the Fe-50Cu coating. In both cases, an iron-depleted region was present in a subsurface alloy layer. These results differ remarkably from the oxidation behavior of cast Cu-Fe alloys of similar composition but with a large grain size, which formed mixed external scales of iron and copper oxides in air and simultaneous internal and external oxidation of Fe under both high and low oxygen pressures. Therefore, a grain size reduction can effectively promote the selective external oxidation of the more reactive component in binary two-phase alloys due to an increase in the mutual solubility of the two components associated with the method of alloy preparation as well as to the presence of a large density of grain boundaries in the coatings which may act as short-circuit diffusion paths, allowing a faster outward diffusion of iron during oxidation.  相似文献   

7.
It is essential for materials used at high‐temperatures in corrosive atmosphere to maintain their specific properties, such as good creep resistance, long fatigue life and sufficient high‐temperature corrosion resistance. Usually, the corrosion resistance results from the formation of a protective scale with very low porosity, good adherence, high mechanical and thermodynamic stability and slow growth rate. Standard engineering materials in power generation technology are low‐Cr steels. However, steels with higher Cr content, e.g., austenitic steels, or Ni‐base alloys are used for components applied to more severe service conditions, e.g., more aggressive atmospheres and higher temperatures. Three categories of alloys were investigated in this study. These materials were oxidised in laboratory air at temperatures of 550°C in the case of low‐alloy steels, 750°C in the case of an austenitic steel (TP347) and up to 1000°C in the case of the Ni‐base superalloys Inconel 625 Si and Inconel 718. Emphasis was put on the role of grain size on the internal and external oxidation processes. For this purpose various grain sizes were established by means of recrystallization heat treatment. In the case of low‐Cr steels, thermogravimetric measurements revealed a substantially higher mass gain for steels with smaller grain sizes. This observation was attributed to the role of alloy grain boundaries as short‐circuit diffusion paths for inward oxygen transport. For the austenitic steel, the situation is the other way round. The scale formed on specimens with smaller grain size consists mainly of Cr2O3 with some FeCr2O4 at localized sites, while for specimens with larger grain size a non‐protective Fe oxide scale is formed. This finding supports the idea that substrate grain boundaries accelerate the chromium supply to the oxide/alloy phase interface. Finally, in the Ni‐base superalloys deep intergranular oxidation attack was observed, taking place preferentially along random high‐angle grain boundaries.  相似文献   

8.
Austenitic Fe-18Cr-20Ni-1.5Mn alloys containing 0, 0.6, and 1.5 wt.% Si were produced both by conventional and rapid solidification processing. The isothermal and cyclic oxidation resistance of the alloys were studied at 900°C in pure O2 to elucidate the role of alloy microstructure and Si content on oxidation properties. The conventionally-processed, large-grained alloy that contained no silicon formed Fe-rich nodules during oxidation. The nodule formation was effectively eliminated by either reducing the alloy grain size by rapid solidification or by adding Si to the alloy. The lowest weight gains were achieved when a continuous silica layer formed between the alloy and the external chromia scale. The formation of the continuous silica layer required a ombination of fine alloy grain size and high Si content. The presence of S in the alloy was found to be detrimental to oxide scale adherence when the silica layer was continuous.  相似文献   

9.
The kinetics and morphologic oxidation properties of titanium, Ti-1.5Ni and Ti-2.5Cu were compared. Titanium and Ti-1.5Ni have a similar behavior, concerning the kinetics and the oxide micro structure. Copper additions decrease the oxidation rate of titanium. The oxide scales formed on Ti-Cu are thinner and less cracked than those obtained on Ti or Ti-1.5Ni. Copper is found in the oxide scale of Ti-Cu, whereas nickel is not found in the oxide scale of Ti-Ni. The oxidation of titanium and its alloys is controlled chiefly by diffusional phenomena in the oxide scale. Thus the alterations of the oxide scale structure and the slower oxidation rate of Ti-2.5Cu can be attributed to the copper which diffuses towards the gas-oxide interface.  相似文献   

10.
张强  祝志祥  陈保安  丁一  陈新  张宁  孟利 《金属热处理》2020,45(10):104-107
选取了两类典型电热合金丝材成品进行了检测,对比分析了合金丝的显微组织及织构,包括Fe-Cr-Al系的国产0Cr25Al5合金与进口0Cr22Al5合金和Ni-Cr-(Fe)系的国产Cr20Ni80合金与Cr20Ni30合金。结果表明:进口Fe-Cr-Al合金的平均晶粒尺寸相对较大,晶粒尺寸分布较为均匀,而织构较弱;国产0Cr25Al5合金的平均晶粒尺寸均匀程度较差,而较粗的样品平均晶粒尺寸较大且织构稍弱,接近于进口Fe-Cr-Al合金,表明较粗的丝材制备形变量较小。Ni-Cr-(Fe)系的合金均表现为不均匀的晶粒组织,而Cr20Ni80合金相较于Cr20Ni30合金的大尺寸晶粒更多;减小合金丝材的直径有细化组织作用,同时还能增强两种Ni-Cr合金丝中均存在的<111>丝织构。  相似文献   

11.
The oxidation behaviour of Ni-4.2% Mo, Ni-4.0% W, Ni-2.5% Al, Ni-4.2% V and Ni-5.0% Cr (all wt. %) at 1200 °C in flowing oxygen at 1 atm. pressure has been studied using various techniques. In particular, the solubility of the second element in NiO, its distribution across the NiO scale and the effects of these on the oxidation rates and scale morphologies have been examined. The oxidation rates of all the alloys are greater than that of nickel, although for Ni-4.2% Mo, where incorporation of internal oxide into the scale does not occur and molybdenum does not dope the oxide, the small increase in weight gain during oxidation Compared with that for nickel is due to internal oxide formation only. As the internal oxide particles pileup at the alloy/oxide interface, they exert a blocking effect to outward diffusion of Ni2+ ions, especially in the later stages of oxidation. Ni-4.0% W behaves similarly, although a few internal oxide particles are incorporated into the scale and a small amount of doping of the oxide ensures that it thickens at a slightly faster rate than the scale on nickel and for Ni-4.2% Mo. The oxidation rates of the other alloys are significantly faster than that of nickel and increase in the order Ni-2.5% Al, Ni-4.2% V, Ni-5.0% Cr. These increased rates are largely caused by increases in the total cation vacancy concentrations in the scales, although internal oxide formation can make a significant contribution to the oxidation kinetics. The influence on the oxidation behaviour of a number of factors, namely doping of the scale, internal oxidation, dissociation of NiO and transport of gaseous oxygen within the scale, blocking effects in the oxide and at the alloy/oxide interface, and grain growth of the oxide, are considered in detail.  相似文献   

12.
采用热重分析、XRD和SEM等方法研究Ti-Cr合金(0≤w(Cr)≤25%)从室温至1723K的非等温氧化行为及氧化膜的微观结构,探讨Cr元素对Ti-Cr合金抗氧化能力的影响机制。结果表明:当Cr含量小于某一临界值wC时,随着Cr含量的增加合金的抗氧化能力降低;当Cr含量高于wC时,随着Cr含量的增加合金的抗氧化能力提高;当温度高到1000K时,Ti-Cr合金的氧化仍符合抛物线规律,且主要发生钛的氧化;Ti-Cr合金氧化后基体中存在氧扩散层,氧化膜主要为金红石型TiO2,内层氧化膜出现富Cr现象,Cr氧化物的析出提高了Ti-Cr合金的抗氧化能力。金属和合金的着火是一个快速非等温氧化的过程,预测了Ti-Cr合金着火阶段的氧化机制。  相似文献   

13.
从氧化动力学、氧化膜相组成及微观结构方面,研究了晶粒尺寸对18Cr-8Ni耐热钢在700 ℃下的高温水蒸汽中氧化行为的影响。结果表明:晶粒细化提高了耐热钢的抗水蒸汽氧化性能,降低了其氧化增重,推迟了失稳氧化的发生;晶粒细化改变了耐热钢氧化膜的微观结构,减小了“弹坑”区的尺寸且促进了“弹坑”区与合金界面上富Cr氧化物层的形成;晶粒细化对耐热钢抗水蒸汽氧化性能的改善主要归因于其对氧化物的形核和Cr向氧化膜/合金界面扩散的促进作用。  相似文献   

14.
采用增量法研究了不同Al含量(0.5%、1.5%、2.5%,质量分数)的Fe-20Cr-35Ni-0.6Nb含Nb合金在1000 ℃空气条件下的抗氧化。采用SEM、EDS、TEM、拉曼光谱等手段研究了合金的显微组织和氧化膜特性。结果表明,3种含Nb合金组织为单相奥氏体,基体中存在少量弥散分布的NbC沉淀相,氧化前后沉淀相含量和晶粒大小保持不变。添加0.5%和1.5%的Al后,含Nb合金的表面形成多层结构的氧化膜,最外层和第三层为Cr2O3,次表层主要为NiCr2O4、NiFe2O4和Fe2O3,最内层为Al2O3内氧化层。基体中的NbC析出相和氧化膜中少量Nb的氧化物(Nb2O5)加剧了氧化膜的疏松。当Al含量增加到2.5%时,含Nb合金表面形成连续致密的Al2O3氧化膜,降低了Fe-20Cr-35Ni-0.6Nb合金的氧化速率,提高了抗氧化性。  相似文献   

15.
The compositions and structures of the passive films formed on 825 nickel base alloy lined pipe serving for one year in an actual corrosion environment including 2.0 MPa H2S and 1.5 MPa CO2 at a temperature of 55℃were investigated by X-ray photoelectron spectroscopy(XPS).The results show that the passive films formed on 825 nickel base alloy is not destroyed even thicker than air-formed one and the films are composed of multilayer with different composition in each layer:an external part composed of a mixture of Cr and Ni oxide(more Ni included)and an inner part composed of a mixture of Cr and Ni oxide(Cr-rich layer).  相似文献   

16.
Ce对Ni—Cr—Cu合金抗氧化性的影响   总被引:2,自引:1,他引:1  
作者研究了添加0.1%和0.8%Ce的Ni—Cr—Cu合金在空气中1200℃100小时等温氧化和500小时循环氧化。Ni—Cr—Cu合金中添加微量Ce后,显著降低了氧化速率,增加了氧化膜的剥落抗力。氧化速率降低是添加Ce后各种效应综合作用的结果。它们是:(1)由于Cr的扩散加快,富Cr保护膜更迅速形成;(2)聚集在膜/合金界面附近的含Ce氧化物与空位复合,减少了膜/合金界面的空洞;(3)固溶于氧化膜中的含Ce氧化物阻碍了Cr~(3+)沿氧化物晶界的短程扩散。 提高耐剥落抗力主要原因是:(1)添加Ce使氧化膜晶粒变细,从而改善了塑性变形和适应热应力的能力;(2)0.8Ce合金中稀土氧化物“钉扎”(Keying)作用改善了膜与合金粘附性,并改变了热应力的分布状态。  相似文献   

17.
In the early stages of alloy oxidation, diffusion of solute through the metal to the surface is important in determining the composition of the oxide scale that forms during the transient stage. Rapid solute diffusion to the interface will promote the formation of a protective scale, thereby suppressing the formation of base-metal oxide. The effect of alloy grain size on the formation of the transient oxide scale has been studied using a very fine grained NiCrAlY alloy produced by plasma spraying. The long-term oxidation behavior of this alloy was found to be independent of the grain size of the underlying alloy. However, the short-term, transient oxidation rate was found to decrease with decreasing alloy grain size. This is attributed to the rapid grain boundary transport of Al and Cr to the oxide/metal interface which promoted the formation of Cr2O3 and Al2O3.  相似文献   

18.
Ni_3Al基合金的初期氧化速率   总被引:1,自引:0,他引:1  
用感量为2μg的Setaram热天平研究了Ni3Al及Ni3Al-Cr基合金700℃~1100℃的初期氧化行为。Ni3Al合金在中温区(7000℃~900℃)的氧化,随温度升高初期氧化速率明显增加(氧化5min),800℃及900℃氧化0.5h后试样的氧化增重低于700℃的。在温度低于900℃时,Ni3Al-Cr基合金的氧化增重明显小于Ni3Al基合金;高于1000℃时,其氧化增重明显大于Ni3Al基合金的。EDS分析表明Ni3Al-Cr基合金表面不出现纯NiO相的氧化物区。加Cr可降低Ni3Al的晶格常数,增加原子密堆度,从而阻碍Ni原子的扩散,降低合金的氧化速率。  相似文献   

19.
The investigated alumina forming FeNiCrAl model alloy shows protective oxidation behavior in dry and humid environment at 900 °C. Hence, this type of alloy may replace conventional chromia forming austenitic alloys in aggressive oxidizing/reducing environments. A detailed investigation of the oxide scale development reveals a complex initial scale development. Firstly, at alloy grain boundaries, a thin Al rich oxide forms which is replaced by transient alumina platelets in dry and equiaxed α-Al2O3 crystallites in humid atmosphere. The scale at alloy grain centers develops via a layered scale of external chromia:Fe/Ni metal inclusions:internal alumina to a layered external spinel:internal alumina scale in dry atmosphere. In humid condition an additional oxide feature appears on the center of large alloy grains i.e. thick oxide protrusions. Despite the initially different phase compositions a continuous protective α-Al2O3 scale forms both atmospheres.  相似文献   

20.
The oxidation behaviour of dilute NiAl alloys at 800–1200°C in flowing oxygen at 1 atm pressure has been studied using kinetic measurements, optical and scanning electron microscopy and electron probe micro-analysis. The oxidation rates of Ni0.5 to 4%Al alloys are greater than the corresponding values for nickel at 1000 and 1200°C, but less at 800°C. The increased rates at the higher temperatures are largely due to increases in the total cation vacancy concentration in the scale, although internal oxide formation can make a significant contribution to the oxidation rate. The decreased rates at 800°C are almost certainly due to a build-up of Al2O3 particles at the oxide/alloy interface. The roles played in the oxidation processes by doping, internal oxidation, blocking effects in the oxide, dissociation of NiO and gaseous transport of oxygen within the scale are considered in detail and related to the oxidation rates of the various alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号