首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用楔形铜模铸造法成功制备了Mg65Cu22Ni3Y10-xNdx(x=0、2、4、5、6、8)块体非晶合金,采用XRD、DSC研究了Nd对该合金体系热稳定性和非晶形成能力(GFA)的影响。结果表明,当x=2、4时,Nd的添加可有效提高该合金的GFA和热稳定性;当Nd含量为2%(摩尔分数)时,合金具有最高的过冷液相区(ΔTx=61.5K)及最好的热稳定性;当x=5时,尽管过冷液相区(ΔTx=48.5K)最窄,但此时合金具有最强的非晶形成能力(Trg=Tg/Tl=0.568)和临界厚度(δmax=3.8mm);随着Nd的进一步增加(x>5),合金的玻璃形成能力降低。  相似文献   

2.
Bulk amorphous metal—An emerging engineering material   总被引:1,自引:0,他引:1  
During the last two decades, researchers have developed families of metal alloys that exhibit exceptional resistance to crystallization in the undercooled liquid state. Upon cooling, these alloys readily form glass or vitrify to form bulk amorphous alloys or bulk metallic glasses. The stability of the undercooled molten alloys with respect to crystallization has enabled studies of liquid thermodynamics, rheology, atomic diffusion, and the glass transition previously not possible in metallic systems. Bulk amorphous alloys exhibit very high strength, specific strength, and elastic strain limit, along with unusual combinations of other engineering properties. These factors, taken together, suggest that bulk amorphous metals will become widely used engineering materials during the next decade.  相似文献   

3.
In the present paper, the influence of minor additions of Si, Pd and La with representative atomic sizes on glass forming ability (GFA) and thermal stability of Zr-Ni-based amorphous alloys has been investigated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and high resolution TEM (HRTEM). The results show that minor additions of La, Pd and Si can improve GFA of Zr-Ni-based alloys and La exhibits the optimum effect on enhancing GFA. The efficient cluster packing model can well explain the correlation between atomic sizes of additional elements and GFA of amorphous alloys. In addition, the relationship of the atomic size between the additional element and Zr has a more important effect on GFA than that between the additional element and Ni. The activation energy for crystallization of the Zr-Ni-based amorphous alloys with Si, Pd and La additions is obviously higher than that of the Zr66.7Ni33.3 amorphous alloy, and increases with decreasing distance between neighboring atoms. The thermal stability has a relation with topological short-range ordering of amorphous alloys. The proper addition of small atoms is preferential to enhance thermal stability of amorphous alloys due to stronger short-range ordering. Moreover, the small or intermediate atom addition can produce even better effect on thermal stability than the large atom addition.  相似文献   

4.
在水冷铜坩埚中采用铜模吸铸法制备出直径为3.0mm的Cu50Zr42Al8合金圆棒,研究了熔体过热处理对铜模吸铸法制备块状非晶合金的影响,表明通过熔体过热处理可以提高块状非晶的形成能力,并且存在一个最佳的过热温度。采用DSC技术对铜基成分为Cu50Zr42Al8块状非晶合金进行变温晶化动力学研究,结果表明,随着升温速率的增大,该合金的热稳定性参数和约化玻璃转变温度(Trg)均增大。  相似文献   

5.
董亭义  杨滨  何建平  张勇 《金属学报》2008,44(6):659-664
利用气雾化和喷射成形技术制备了大尺寸La62Al15.7(Cu,Ni)22.3非晶合金.X射线衍射(XRD)实验证实,直径为340 mm,最大厚度为13 mm的沉积坯具有完全非晶态结构.分析了气雾化和喷射成形La62AIl5.7(Cu,Ni)22.3合金过程中非晶相形成的机制,选定了喷射成形La62Al15.7(Cu,Ni)22.3非晶合金沉积坯致密化的合适的工艺参数.研究结果显示,喷射成形可望成为大尺寸块体(尤其是盘状)非晶合金新的制备技术.  相似文献   

6.
《Intermetallics》2006,14(8-9):987-993
Twin-roll strip casting was utilized to fabricate the sheet products of Zr- and Cu-base bulk amorphous alloys with quite different glass forming abilities (GFAs). Simulation of the solidification behavior of the these amorphous forming alloys during twin-roll strip casting shows that suitable cooling rate can be achieved by twin-roll strip casting to form amorphous structure through the thickness of sheet. Optimum twin-roll strip casting conditions have been suggested based on the simulation results. Actual twin-roll strip casting shows that both Zr-base alloy with high GFA and Cu-base alloy with much less GFA can be strip cast forming amorphous structure. The results indicate that the twin-roll strip casting is a viable process for continuous fabrication of sheets of bulk amorphous alloys with a wide range of critical cooling rates.  相似文献   

7.
Brief overview of current containerless electrostatic levitation processing technique and research progress of the area of bulk metallic glass formation is introduced. Undercooling behavior during solidification of the bulk metallic glass forming Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy has been studied using the containerless electrostatic levitation processing technique. The melt is successfully undercooled to the glass transition temperature forming the amorphous phase with the proper thermal treatment. Differential scanning calorimetry (DSC) is used to determine the Gibbs free energy difference between the crystal and the undercooled liquid. The results indicate that the Gibbs free energy difference between the metastable undercooled liquid and the crystalline solid of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy is relatively small compared to that of conventional metallic glass forming binary alloys even for large undercoolings. The hemispherical total emissivity of undercooled liquid is measured in the whole region of undercooled liquid state. Due to the combining effects of excellent thermal stability of the undercooled liquid in the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy with unique experimental technique of the containerless electrostatic levitation processing, it is possible to construct the complete time-temperature-transformation (TTT) diagram. The measured TTT diagram exhibiting the expected “C” shape can not be satisfactorily explained by the existing models due to the complex crystallization mechanisms.  相似文献   

8.
利用铜模吸铸法制备(Fe0.5Co0.5)71-xNbxZr3Nd4B22(x=0~10)系块体合金,研究合金元素Nb的添加对该体系合金非晶形成能力(GFA)和磁性能的影响。结果表明,适当Nb的添加能有效提高合金的非晶形成能力。当Nb含量为5at%时,可获得具有完全非晶结构的块体非晶合金,该合金呈现典型的软磁性能,饱和磁化强度(Ms)为79 Am2/kg;合金的晶化温度(Tx)为957 K,晶化激活能E为538.30 kJ/mol。  相似文献   

9.
Zr55Al10Cu30Ni5-xPdx块状非晶合金的玻璃形成能力和热稳定性   总被引:2,自引:0,他引:2  
用铜模铸造方法制备了不同尺寸的Zr55Al10Cu30Ni5-xPdx(x=0,1,3,5)块状非晶合金,采用X射线衍射(XRD)、扫描差热分析(DSC)和透射电镜(TEM)分别为Zr55Al10Cu30Ni5-xPdx块状非晶样品的结构、热稳定性和微观组织进行了研究。结果表明:x=1时,合金具有最高的过冷液相区(高达100K)及最大的热稳定性,而对合金的玻璃形成能力影响不大,这说明用适量的Pd代表Zr55Al10Cu30Ni5合金中的Ni会提高合金的热稳定性;x=3时,合金的热稳定性有所提高,但降低了合金的玻璃形成能力;x=5时,非晶合金的热稳定性和玻璃形成能力同时降低。  相似文献   

10.
A various multicomponent bulk metallic glasses (BMGs) were prepared at a low cooling rates of 1–100 K/s. The effects of various additions on the glass forming ability (GFA), properties and thermal stability of the alloy systems were investigated. The structural and properties changes of the BMGs upon addition were studies using X-ray diffraction, differential scanning calorimetry, density measurement, and acoustic measurement. It is found that the proper elemental addition can significantly improve the GFA and properties of the bulk glass-forming alloys. The addition is an effective way for improving GFA, and properties of the bulky glass-forming alloys. The roles of the additions in the glass formation, properties and crystallization are discussed.  相似文献   

11.
Ni对Mg-Cu-Tb非晶合金形成及力学性能的影响   总被引:1,自引:0,他引:1  
利用熔体铜模喷铸法制备出直径为3 mm的Mg65Cu25-xNixTb10(x=0,5,10)非晶合金。利用X射线衍射、差热分析、压缩实验分析和扫描电镜分析了添加Ni元素对Mg-Cu-Tb非晶合金形成能力及力学性能的影响。研究表明:随着Ni含量的增加,合金的玻璃转变温度Tg增大;开始结晶温度Tx降低;过冷液相区宽度ΔTx减小,约化玻璃转变温度Trg从0.562降至0.530,非晶形成能力逐渐降低。压缩实验结果表明:当Ni含量增加到5%时可以明显提高Mg-Cu-Tb-Ni非晶合金的断裂强度。  相似文献   

12.
通过对Al80 Cu2 0 非晶的晶化过程的DSC分析以及粘度测试分析 ,并运用分子动力学模拟的方法 ,研究了液态Al80 Cu2 0 合金中存在的原子团簇及其随温度的变化 ,分析了液态中原子团簇对非晶形成能力的影响。研究了Al80 Cu2 0 合金液态的非晶形成能力与液态微结构以及液态粘度的关系。发现Al80 Cu2 0 的液态粘度对其非晶形成能力有着重要的影响。  相似文献   

13.
在铜模铸造条件下制备了直径2.5mm的Nd61Fe30Zn9块状非晶合金.在普通DSC条件下,没有观察到这种合金的玻璃转变温度,晶化温度为730K,比Nd60Fe30Al10非晶合金的晶化温度低约70K,因此该合金的热稳定性较低.熔化行为分析表明,合金Nd61Fe30Zn9的熔化过程为单峰吸热过程,且熔化区间仅为54K,说明该合金的成分接近合金的共晶成分,但母合金的自然凝固组织不具有共晶凝固特点,表现为粗大的枝晶状组织.讨论了成分和组织对合金非晶形成能力的影响.  相似文献   

14.
Ti-Zr-Ni-Cu非晶钎料   总被引:9,自引:3,他引:9       下载免费PDF全文
根据Si3N4陶瓷钎焊性和非晶形成能力的要求,确定非晶钎料合金成分为Tj40Zr25Nj15Cu20;采用单辊熔体快淬法成功制备了箔带状Ti40Zr25Ni15Cu20钎料合金,并通过X射线衍射、差热分析、电镜线扫描等分析手段证实其为非晶态。试验结果表明,Ti40Zr25Ni15Cu20合金其约化玻璃温度Trg=0.76,过冷液相区△Tx=78K。  相似文献   

15.
《Acta Materialia》2002,50(14):3567-3578
The glass-forming ability (GFA) and thermal stability of Nd70−xFe20Al10Yx (0≤x≤15) alloys produced by melt spinning and copper-mold casting have been investigated. Ribbon samples in the composition range show a fully amorphous structure. Except Y=5 at.%, bulk amorphous alloys at least 2 mm in diameter were obtained. Both the amorphous ribbon and the bulk cylinder for the Nd55Fe20Al10Y15 alloy show a distinct glass transition temperature and a wide supercooled liquid region before crystallization. It is suggested to use a new parameter to characterize both the GFA and the thermal stability of Nd–Fe–Al–Y alloys, showing that Nd60Fe20Al10Y10 alloy is the best one both in GFA and thermal stability. The remanence (Jr), magnetization (J1500), and coercivity (Hc) for the as-cast Nd70−xFe20Al10Yx amorphous cylinders depend strongly on the composition. The enhanced GFA and thermal stability as well as the reduction of magnetic properties are discussed.  相似文献   

16.
In the present work Ti–Fe–Si and Ti–Fe–Si–X (X = Zr, Pd, Ge) glassy alloys are discussed as potential biomedical materials. Depending on composition and experimental conditions these alloys possess glassy, quasicrystalline or crystalline structure. The glassy state and crystallization behavior of the melt spun ribbons were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and the Hank's solution was used as simulated body fluid for corrosion tests. Ternary Ti–Fe–Si alloys near the Ti65Fe30Si5 eutectic point were prone to form quasicrystals if the cooling rate was not high enough to retain amorphous structure. The compositions on the steeper side of the eutectic point could be vitrified. The results indicate that small additions of Zr can have a positive effect on glass formation, while additions of Ge, Pd may have a detrimental effect by promoting crystallization. Ti–Fe–Si and Ti–Fe–Si–Zr alloys exhibited high corrosion properties, superior to that of pure Ti and most of Ti-based glassy alloys reported in the literature. Being free of Ni and Cu this group of alloys may be considered for possible biomedical application.  相似文献   

17.
The effects of Ce and Mm contents on the glass forming ability (GFA) of melt-quenched Al89−xNi8CexSi3 and Al89−xNi8MmxSi3 (x = 0, 1, 3, 5, 7 at.%) alloys have been systematically investigated by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). According to the XRD and DSC results, both Ce and Mm elements can enhance the GFA and thermal stability of the Al–Ni–Si alloys. Moreover, only the x = 5 and x = 7 alloys are totally amorphous in both systems quenched at the wheel speed of 36.6 m/s. Compared with amorphous Al84Ni8Ce5Si3 alloy at different cooling rates, amorphous Al84Ni8Mm5Si3 alloy has higher GFA which is considered to have relation to the different atomic structure of the amorphous alloy.  相似文献   

18.
Room-temperature brittleness and strain-softening during deformation of bulk metallic glasses, and limited processability of shape memory alloys have been stumbling blocks for their advanced functional structural applications. To solve the key scientific problems, a new shape memory bulk metallic glass based composite, through the approach using transformation-induced plasticity (TRIP) effect of shape memory alloys to enhance both ductility and work-hardening capability of metallic glasses, and superplasticity of bulk metallic glass in supercooled liquid region to realize near net forming, was developed in this work. And the Ti-Ni base bulk metallic glass composites (BMGCs) rods were prepared by the levitation suspend melting-water cooled Cu mold process. Microstructure, thermal behavior, mechanical properties and high temperature deformation behavior of the alloy were investigated. The results show that the as-cast alloy microstructure consists of amorphous matrix, undercooled austenite and thermally-induced martensite. Besides, the size of the crystal phase precipitated on the amorphous matrix in-creases from the surface to the inside. The alloy exhibits excellent comprehensive mechanical properties at room temperature. The yield strength, fracture strength and the plastic strain of alloy are up to 1286 MPa, 2256 MPa and 12.2%, respectively. Under compressive loading in the supercooled liquid region, the composite exhibits approximate Newtonian behavior at lower strain rate in higher deformation temperature, and the optimum deformation temperature is T>480 degrees C and the intersection part with supercooled liquid region (SLR). When the temperature is 560 degrees C and the strain rate is 5x10(-4) s(-1), the stress sensitivity index m and the energy dissipation rate Psi are 0.81 and 0.895, respectively. Furthermore, the volume of activation is quantified to characterize the rheological behavior.  相似文献   

19.
U-Co系具有较宽非晶成分区间,但其玻璃形成能力(GFA)较差。针对该体系的U_(69.2)Co_(30.8)合金,选择不同类型的元素M(M=Sn,Si,Be,Cu,Pd,Y,Zr)进行微合金化,采用铜辊甩带方法制备U_(69)Co_(30)M_1非晶合金条带样品,结合X射线衍射与差示扫描量热技术研究了微合金化对合金GFA的影响。结果表明,Sn添加对U-Co合金的GFA具有明显改善作用,Si次之,Be、Cu影响不大,Pd、Y、Zr起到恶化效果。结合合金熔化行为的改变和GFA与M元素的熔点、电负性、原子尺寸及M-C混合焓等参数的关联性分析,初步揭示出微合金化对U-Co合金GFA的影响机制,其本质应该与改变合金液体稳定性和晶化驱动力有关。  相似文献   

20.
The glass forming ability (GFA) was investigated in Fe91−xZr5BxNb4 alloys with B contents of 0–36 at.%. The GFA changes with B content, and fully amorphous alloys were prepared by melt spinning for B contents between 5 and 30 at.%. The amorphous alloys crystallize with a primary crystallization mode in the low B content range of 5≤x≤20 at.%, but in the eutectic mode in the high B content range of 20<x<30 at.%. A single new metastable Fe-Zr-B-Nb cubic phase with a lattice constant of 1.0704 nm, a saturation magnetization of 137 emu/g and a coercivity of 7.3 Oe at room temperature is formed when crystallizing in a polymorphous mode at x=30 at.%. The glass transition temperature (Tg), crystallization temperature (Tx), Curie temperature (Tc) and saturation magnetizations (Ms) of the amorphous alloys increase with increasing B content, but the coercivity (Hc) decreases. As the B content exceeds 20 at.%, not only increase the Tg, Tx and GFA sharply, due to the change of crystallization mode, but also the concentration dependence of the Tc and Ms changes. It is concluded that the amorphous alloys have better GFA, thermal stability and soft magnetic properties for the high B contents of 25–30 at.% than for the low B contents of 5–20 at.%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号