首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of annealing treatment on the microstructure and electrochemical properties of low-Co LaNi3.55Mno.35Co0.20Al0.20Cuo.75Fe0.10 hydrogen storage alloys were investigated.X-ray diffraction (XRD) analysis indicated that annealing treatment remarkably reduced the lattice strain and defects,and increased the unit-cell volume.The optical microscope analysis showed that the as-cast alloy had a crass dendrite microstructure with noticeable composition segregation,which gradually disappeared with increasing annealing temperature,and the microstructure changed to an equiaxed structure after annealing the alloy at 1233 K.The electrochemical tests indicated that the annealed alloys demonstrated much better cycling stability compared with the as-cast one.The capacity retention at the 100th cycle increased from 90.0%(as-cast) to 94.7% (1273 K).The annealing treatment also improved the discharge capacity.However,the high rate dischargeability (HRD)value of the annealed alloy slightly dropped,which was believed to be ascribed to the decreased exchange current density and the hydrogen diffusion coefficient in alloy bulk.  相似文献   

2.
研究了退火处理(1173~1273K、3h)对无Co贮氢合金MlNi4.0Al0.3Si0.1Fe0.6的微结构和电化学性能的影响。XRD分析表明,退火态合金仍为单相CaCu5型结构,但合金相的成分和结构的均匀性得到明显改善。金相观察和能谱分析显示:铸态合金为比较粗大的树枝晶结构并存在明显的成分偏析;经1173K处理后的合金仍为树枝晶,且树枝结构更为明显;但经1223~1273K处理后合金的显微组织转变为等轴晶;退火处理使合金中元素的分布趋于均匀化。电化学测试表明,退火处理后合金的放电容量有所提高,循环稳定性得到显著改善,但高倍率放电性能略有降低。研究发现,退火态合金电极的交换电流密度及氢在合金中的扩散系数较铸态合金的有所减小是导致其高倍率放电性能降低的主要原因。  相似文献   

3.
研究了退火温度对A287型La1.5Mg0.5Ni7.0合金的相结构和电化学性能的影响。结果表明:铸态合金由LaNi,相、LaMgNi4相、(La,Mg)Ni3相以及Gd2Co7型相组成,退火处理后,合金由Gd2Co7型相、Ce2Ni7型相和PuNi3型(La,Mg)Ni3相组成:随着退火温度升高,PuNi3型相的丰度减小,ce2Ni7型相的丰度增加,(La,Mg)Ni3相的a轴参数、c轴参数和晶胞体积均增大;经1073K保温24h退火后,合金电极具有最高的放电容量(391.2mAh/g),退火温度升高,合金的最大放电容量略有降低:合金电极的循环稳定性随着退火温度的升高不断提高,在1173K时合金电极经150次循环后其电极容量保持率C150/Cmax=82%;合金的高倍率放电性能(HRD)随退火温度升高略有增加,在1173K时,合金电极的HRD最好(HRD900=89.0%);交换电流密度I0、极限电流密度I1及氢扩散系数D随着退火温度的升高而增大。  相似文献   

4.
为了改善铸态La3MgNi14合金的电化学性能,在0.3MPa氩气气氛下对La3MgNi14合金进行了10h退火处理,退火温度分别为1123,1223和1323K。采用x射线衍射(XRD)、扫描电镜(SEM)和电化学实验研究了合金的微观结构和电化学性能。结果表明,铸态及1123K温度退火后的合金由LaNi5相、(La,Mg)2Ni7相以及少量的LaNi2相组成。1223K温度退火后合金含有LaNis,(La,Mg)2Ni7和(La。Mg)Ni3相。1323K温度退火后合金的主相为LaNi5和(La,Mg)Ni3相。与铸态合金相比,退火后合金组织更加均匀,晶粒长大。随着退火温度的增加,合金的一些电化学性能(如最大放电容量、放电效率、循环稳定性)以及动力学参数(如高倍率放电性能)增强,而电位差和电荷迁移电阻降低。在本研究范围内,为了放电容量和循环稳定性之问的平衡,铸态La3MgNi14合金的适宜退火温度为1323K。  相似文献   

5.
La0.7Mg0.3Ni2.8Co0.5贮氢电极合金经过适当热处理后(1123K),最大放电容量、循环稳定性、高倍率放电性能(HRD)、交换电流密度(I0)以及极限电流密度(IL)都有明显改善,铸态合金电极的最大放电容量为392mAh/g,放电电流密度,Id=2000mA/g时,HRD2000=74.0%,I0=266.7mA/g,IL=3425.5mA/g;经1123K保温8h退火的合金电极的最大放电容量提高到414mAh/g,HRD2000=76.2%,I0=407.9mA/g,IL=3753.6mA/g。X射线衍射(XRD)分析表明,衍射峰宽度随着退火温度的升高而变窄,其原因是合金经退火处理相结构的变化和成分的均匀化。  相似文献   

6.
The effects of annealing treatment on the microstructure and electrochemical properties of low-Co LaNi3.55Mn0.35Co0.20Al0.20Cu0.75Fe0.10 hydrogen storage alloys were investigated. X-ray diffraction (XRD) analysis indicated that annealing treatment remarkably reduced the lattice strain and defects, and increased the unit-cell volume. The optical microscope analysis showed that the as-cast alloy had a crass dendrite microstructure with noticeable composition segregation, which gradually disappeared with increasing annealing temperature, and the microstructure changed to an equiaxed structure after annealing the alloy at 1233 K. The electrochemical tests indicated that the annealed alloys demonstrated much better cycling stability compared with the as-cast one. The capacity retention at the 100th cycle increased from 90.0% (as-cast) to 94.7% (1273 K). The annealing treatment also improved the discharge capacity. However, the high rate dischargeability (HRD) value of the annealed alloy slightly dropped, which was believed to be ascribed to the decreased exchange current density and the hydrogen diffusion coefficient in alloy bulk.  相似文献   

7.
采用磁悬浮感应熔炼及退火处理的方法,制备La1.9Ti0.1MgNi9合金。对合金样品的XRD、PCT和电化学测试表明,所有样品均由多相组成,LaNi5相为主相。当退火温度达到1173 K时,合金中LaMg2Ni9相消失,Ti2Ni相出现。退火处理能提高合金的晶化程度、降低吸放氢平台压。退火1073 K合金的有效吸氢量较高,在303 K时达到1.25% (质量分数)。La1.9Ti0.1MgNi9合金退火后,放电容量、循环稳定性以及高倍率放电性能得到极大改善,以1173 K退火合金电化学性能较好,其最大放电容量为377 mAh/g,1100 mA/g电流密度下的高倍率放电性能为0.839,经112次充放电循环后放电容量保持率为60%。  相似文献   

8.
Several multi-component Mm-based hydrogen storage alloys with cobalt content from 0.8–1.0 have been prepared. The hydrogen absorption–desorption characteristics in gas–solid reactions and the electrochemical properties as MH electrodes have been investigated. The addition of small amounts of Al effectively lowers the hydrogen equilibrium pressure and improves the cycling stability of the alloys. Electrochemical measurements show that the MmNi3.4Co1.0Mn0.5Al0.1 alloy exhibits a maximum electrochemical capacity of 322 mA h g−1 with a capacity decay of about 19.5% after 100 cycles. Annealing treatments flatten the plateau region and lower the hydrogen equilibrium pressure, which results in an increase of hydrogen uptake below 1 atm. The increasing trend of hydrogen storage capacity from the as-cast sample to the annealed sample in the gas–solid reactions is in good agreement with the electrochemical results. The electrochemical discharge capacity of the MmNi3.4Co1.0Mn0.5Al0.1 alloy increases to 334 mA h g−1 and 340 mA h g−1 after annealing for 3 h and 28 h, respectively, from 322 mA h g−1 in the as-cast condition. The electrochemical cycling stability of the annealed samples was also greatly improved. The capacity decay for both annealed samples is about 8.3% and 6.8%, respectively, after 100 charge–discharge cycles. It was suggested that annealing treatments enhance the compositional homogeneity and cause the secondary phase (separated phase) to dissolve in main phase, which result in the improvement of electrochemical cycling stability of the alloy electrodes.  相似文献   

9.
Properties of Zr-Ti-V-Mn-Ni hydride alloy   总被引:1,自引:0,他引:1  
1 INTRODUCTIONWiththedevelopmentofeconomicsandcitytraffics ,moreandmoreoil poweredvehiclesappear,resultingmoreseriouspollutiontoth  相似文献   

10.
Hydrogen strorage alloys with formula La1.5Mg0.5Ni7 were prepared by induction melting followed by different annealing treatments (1073, 1123 and 1173 K) for 24 h. The alloy composition, alloy microstructure and electrochemical properties were investigated, respectively. The results showed that the multi-phase structure of as-cast alloy was converted into a double-phase structure (Gd2Co7-type phase and Ce2Ni7-type phase) through annealing treatments. Mg atoms were mainly located in Laves unit of Gd2Co7-type unit cell and Ce2Ni7-type unit cell. The electrochemical capacity of alloy electrodes after annealing treatment could be up to 390 mAh/g. The cyclic stability of alloy electrodes was significantly improved by annealing treatments; After 150 charge/discharge cycles, the capacity retention ratio of alloy annealed at 1173 K was the highest (81.9%). The high rate dischargeability of alloy electrodes was also improved due to annealing treatment.  相似文献   

11.
熔体旋淬Ml(NiCoMnAl)5贮氢合金的微结构与电化学行为   总被引:1,自引:0,他引:1  
研究了熔体旋淬和常规熔铸Ml(NiCoMnAl)5贮氢合金的微结构和电化学行为。SEM和XRD分析表明,熔体旋淬合金由细小的柱状晶组成,它们的晶体结构与铸态一样,都为CaCu5型六方晶休结构。电化学测试表明,旋淬态合金电极初始容量较高(>210mA.h/g)经1-2次循环就可达到最大放电容量。旋淬速度为10m/s的合金电极的放电容量(294mA.h/g)稍高于铸态合金电极的容量。所有旋淬态合金电极充放电循环稳定性皆优于铸态合金,在600mA/g电流质量密度下,旋流速度为10m/s的合金电极具有较好的高倍率充放电能力,但随着循环次数的增加,其容量稳定性稍次于旋淬速度为25m/s和40m/s的合金电极。  相似文献   

12.
研究333 K时Ti0.17Zr0.08V0.35Cr0.1Ni0.3 合金的循环稳定性和高温倍率放电性能。333 K时,当放电电流密度为60 mA/g时,Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金第1次放电容量为450 mAh/g。随着充放电循环的进行,放电容量迅速降低。当放电电流密度为2400 mA/g,截止电压为0.6 V时,Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金的放电容量仍达到160 mAh/g。并详细探讨影响以上合金电化学性能的因素  相似文献   

13.
采用铸造及退火工艺制备了La0.8-xPrxMg0.2Ni3.35Al0.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4)电极合金。系统研究了Pr的替代对合金的结构与电化学储氢性质的影响,结果表明除少量残余LaNi3相外,铸造及退火合金是由六方Ce2Ni7型(La, Mg)2Ni7相与六方CaCu5型LaNi5相构成的。Pr对La的置换对合金的电化学储氢性质产生明显影响,铸造及退火合金的放电容量和高倍率放电能力随Pr含量的增加先升后降。当Pr含量由0增加至0.4时,铸造及退火合金的100次充放电循环后容积保持率S100从64.96%和72.82%分别增加至77.94%和91.81%  相似文献   

14.
对镁合金热轧板材在不同温度进行退火处理,采用恒电流扫描法、动电位极化扫描法和浸泡法研究不同退火温度对其在3.5%(质量分数)NaCl中的电化学性能和自腐蚀性能的影响;采用光学显微镜、扫描电镜和X射线衍射仪对其显微组织和腐蚀形貌进行观察。结果表明:镁合金阳极板材在退火过程中发生静态再结晶,经250℃、300℃退火1 h,合金板材发生完全再结晶;经300℃退火1 h后,镁合金阳极板材的电化学活性最好,放电稳定电位达1.654 V(vs SCE),但其耐蚀性能最差,腐蚀电流密度为180.38μA/cm2。  相似文献   

15.
La0.67Mg0.33Ni2.5Co0.5贮氢合金的制备和MH电极性能研究   总被引:9,自引:0,他引:9  
采用高频感应熔炼方法制备了PuNi3型La0.67Mg0.33Ni2.5Co0.5合金;用X射线衍射分析和电化学方法研究了添加不同Mg含量以补偿Mg元素烧损时合金的组织结构和电化学性能。X射线衍射分析(XRD)表明,铸态合金由.PuNi3型主相和少量的CaCu5型第二相组成,铸态合金经1223K和10h退火处理后,CaCu5型第二相可明显减少,其中Mg增加10%时得到纯度较高的PuNi3型组织。电化学测试表明,增加适当Mg含量和进行退火热处理能明显提高和改善合金电极容量、循环稳定性和大电流放电性能。与AB5型和。482型Laves相贮氢合金比较,PuNi3型La0.67Mg0.33Ni2.5Co0.5贮氢合金具有电极容量高及优良的大电流放电性能。  相似文献   

16.
1 INTRODUCTIONItiswellknownthatZr basedAB2 LavesphasealloyelectrodeshavehigherdischargecapacityandmuchbettercyclingstabilitythanthatofAB5alloysalthoughitisexpensivecomparedtoAB5alloys .HowtofurtherimprovetheratioofpropertiesandpriceofAB2 alloyshasbeendrawingtheinterestofmanyin vestigators .Someinvestigationsrevealedthatover stoichiometricAB5typealloyshadbettercharge dis chargecyclingstabilitythanstoichiometricalloys[15] ,andsomeover stoichiometricAB2 typealloysshowedhigherdischargec…  相似文献   

17.
Zr系贮氢合金晶体结构与电极特性间关系   总被引:2,自引:0,他引:2  
AB2型Laves相ZrCr(0.4)Mn(0.2)V(0.1)Ni(1.3)贮氢合金经球磨非晶化处理后,相同化学成分的贮氢合金电极容量锐减,合金的晶体结构与其电化学放电容量密切相关.在晶态合金中,主要是Zr2B2(B=Cr,Mn,V,Ni)四面体间隙的氢对电化学放电容量作出贡献,而在非晶态合金中,则是Zr3B,Zr4四面体间隙的氢.由于静电作用,都只有一半的间隙位置能容纳氢原子.非晶化处理导入额外的能量,以致降低合金中氢的电化学反应激活能.  相似文献   

18.
为了改善La<,3>MgNi<,14>合金的循环寿命,在0.3 MPa氩气气氛及1123、1223、1323 K温度下分别对合金进行了退火处理,处理时间为10 h,同时研究了退火温度对La<,3>MgNi<,14>电极合金的相结构、显微组织及电化学行为的影响.结果表明,退火温度影响合金的相结构,铸态及1123 K温度退火后合金包含LaNi<,5>、(La,Mg)<,2>Ni<,7>主相和少量的LaNi<,2>相,1223 K温度退火有利于合金中(La,MS)Ni<,3>相的形成,1323 K温度退火后合金主相为LaNi<,3>和(La,MS)Ni,相.退火后合金的显微组织比铸态合金更加均匀,晶粒尺寸增大.随着退火温度升高,合金的最大放电容量和循环寿命单调增加,高倍率放电性能、损耗角以及极限电流密度增大,充放电电位差和电荷迁移电阻减小.  相似文献   

19.
研究了微量 Ti在 Ml(NiCoMnTi)5合金中的作用.结果表明,在铸态条件下,Ti几乎全部以 TiNi3第二相的形式在晶界析出,退火处理后 TiNi3相消失,但 SEM和 EDS表明 Ti取代了 AB5型化合物中 A侧的稀土 Ml;而不是 B侧的 Ni.Ti在 A侧的取代量以 5%为宜.此时合金在铸态和退火态的放电容量都在 310 mA·h/g以上.进一步提高取代量虽然会改善循环稳定性,但大大降低了放电容量.  相似文献   

20.
研究了快淬、热处理、快淬+热处理制备工艺对铸态(LaCe)1.0(NiCoMnAl)5.0高容量贮氢合金电化学性能的影响。XRD分析表明所有合金均为单相CaCu5型结构,快淬+热处理合金相的成分和结构的均匀性最好。电化学测试结果表明,与铸态合金相比,热处理合金的放电容量和循环性能有所提高,但其倍率性能明显降低;快淬合金的活化性能、放电容量、倍率性能以及循环性能均降低;快淬+热处理合金综合电化学性能最好,具有较好的活化性能、最大的放电容量(344.7mA/g)、最大容量保持率(S100,85.67%)以及较好的倍率性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号