首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
氧气底吹铜熔池熔炼过程的机理及产物的微观分析   总被引:1,自引:0,他引:1  
对氧气底吹熔炼过程气体喷吹行为、造锍熔炼化学反应机理及熔炼炉内热工作状态进行理论分析及水模型实验和取样分析验证。结果表明,氧气底吹气流能使熔体形成均匀的扩散区,实现熔体的搅拌,在气体连续相区和液体连续相区,气液、液液之间的相互作用强烈,为炉内化学反应及传热传质提供了良好的动力学条件;氧气底吹熔炼过程在零配煤的情况下能达到自热熔炼,在节能减排方面,该工艺具有很强的优势;获得了铜渣、冰铜和蘑菇头中各组分的形貌,确定了铜渣、冰铜和蘑菇头的物相组成,渣样主要由冰铜相、磁铁矿相、铁橄榄石相和玻璃体相组成,熔炼内的氧势和硫势分布有利于反应的进行,能有效抑制Fe3O4的形成以及降低渣含铜。  相似文献   

2.
The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace, however, the oxygen enriched air is blown into the furnace from the bottom. Mechanism model of the SKS process was developed by analyzing the smelting characteristics deeply. In our model, the furnace section from top to bottom is divided into seven functional layers, i.e., gas layer, mineral decomposition transitioning layer, slag layer, slag formation transitioning layer, matte formation transitioning layer, weak oxidizing layer and strong oxidizing layer. The furnace along the length direction is divided into three functional regions, that is, reaction region, separation transitioning region and liquid phase separation and settling region. These layers or regions play different roles in the model in describing the mechanism of the smelting process. The SKS smelting is at a multiphase non-steady equilibrium state, and the oxygen and sulfur potentials change gradually in the length and cross directions. The smelting capacity of the SKS process could be raised through reasonably controlling the potential values in different layers and regions.  相似文献   

3.
Flash smelting is a comparatively new method of smelting copper and nickel sulfide concentrates. It takes place when the concentrate, with or without additional fuel, is suspended in gases containing oxygen whereby the heat of oxidation reactions bring the suspended particles to a smelting temperature. From the suspended state the hot particles are separated and molten slag and matte are deposited on the furnace hearth.  相似文献   

4.
1 INTRODUCTIONTheflashsmeltingprocessiswidelyusedthroughouttheworldforcopperproduction ,accountingforabout5 0 %ofglobalcapacityforprimarycopperproduction .Itisbasedontheutilizationoftheheatreleasedbyoxidationreactionsofthesulfuricconcentrates .Thefeedmixtu…  相似文献   

5.
氧枪布置方式对底吹熔池熔炼过程的影响   总被引:1,自引:0,他引:1  
采用FLUENT软件,分别选择kε系列湍流模型和雷诺应力模型(RSM)对底吹熔池熔炼炉内的高温熔体气液两相流进行数值模拟,并且依据相似原理,通过水模型实验对数值模拟结果进行验证,综合评价发现Realizable kε模型的计算精度最高。选用Realizable kε模型,对氧枪布置方式及直径对底吹熔池熔炼过程的影响进行数值模拟研究,结果表明:在一定范围内,适当增大氧枪倾角有利于底吹熔池熔炼过程的进行,当单排氧枪倾角在17°~22°之间时,熔池各指标均处于较好的水平;相对于现场工况,双排氧枪倾角分别为12°和22°时,熔池的搅拌效果显著增强;当氧枪倾角为20°时,其有效搅拌区直径为1.475 m,对应的合理氧枪间距为0.98~1.23m;适当减小氧枪直径可以有效提高熔池气含率。  相似文献   

6.
A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed. The results indicate that radiation plays a significant role in the heat transfer process within the first 0.6 m in the upper part of the reaction shaft, whilst the convection is dominant in the area below 0.6 m for the particle heating. In order to accelerate the particle ignition, it is necessary to enhance the convection, thus to speed up the particle heating. A high-speed preheated oxygen jet technology was then suggested to replace the nature gas combustion in the flash furnace, aiming to create a lateral disturbance in the gaseous phase around the particles, so as to achieve a slip velocity between the two phases and a high convective heat transfer coefficient. Numerical simulation was carried out for the cases with the high-speed oxygen jet and the normal nature gas burners. The results show that with the high-speed jet technology, particles are heated up more rapidly and ignited much earlier, especially within the area of the radial range of R=0.3–0.6 m. As a result, a more efficient smelting process can be achieved under the same operational condition.  相似文献   

7.
In this paper, the authors present the results of theoretical calculations on the rates at which copper concentrate particles and silica particles dissolve in the matte in the smelting furnace of Mitsubishiprocess. Those calculations indicate that the concentrate particles dissolve rapidly in matte, in less than 1 ms, whereas silica particles dissolve at a much slower rate, and they dissolve mainly in the bulk matte in the smelting furnace. Some advantages of bath smelting over flash smelting are given. For more information, contact Zenjiro Asaki, Mitsubishi Materials Corporation, Central Research Institute, 1-297 Kitabukuro-cho, Omiya, Saimtama, 330-8508, Japan.  相似文献   

8.
This paper discusses the most recent developments made at the Gintsvetmet Institute in technologies and equipment for single-stage autogenous smelting of copper sulfide raw materials to produce white metal and blister copper. In particular, the oxygen-flame smelting process and separation of highly basic calcium-containing slags are considered. This technology includes the oxygen-flame smelting process (KFP Process) to produce highly basic self-disintegrating ferrite-calcium slags with their subsequent flotation to recover copper. Also included is a sparging smelting process (FBP Process) to produce combined slags subjected to decopperizing inside the same furnace. Results of special investigations of the slag structure obtained in the KFP and FBP processes and substantiating selection of their chemical and phase composition are presented. These processes meet stringent requirements for advanced technologies with respect to energy conservation and environmental safety with different scales of production and within a wide range of specific conditions of particular operations.  相似文献   

9.
Although the bottom blowing ShuiKouShan process has now been widely implemented in China, in both lead and copper smelters, some doubts, questions, and concerns still seem to prevail in the metallurgical community outside China. In the author’s opinion, part of these doubts and concerns could be addressed by a better general understanding of key concepts of submerged gas injection, including gas jet trajectory and penetration, and the concept, application, and benefits of sonic injection in jetting regime. To provide some answers, this article first offers a discussion on the historical developments of the theory and mathematical characterization of submerged gas jet trajectory, including the proposed criteria for the transition from bubbling to jetting regime and the application of the Prandtl–Meyer theory to submerged gas jets. A second part is devoted to a quantitative study of submerged gas jet penetration in copper bath smelting, including a comparison between bubbling and jetting regimes, and side versus bottom blowing. In the specific cases studied, the calculated gas jet axis trajectory length in jetting regime is 159 cm for bottom blowing, whereas it varies between 129 and 168 cm for side blowing for inclination angles of +18° to ?30° to the horizontal. This means that side blowing in the jetting regime would provide a deeper penetration and longer gas jet trajectory than generally obtained by conventional bath smelting vessels such as the Noranda and Teniente reactors. The theoretical results of this study do corroborate the successful high-intensity practice of the slag make converting process at Glencore Nickel in Canada that operates under high oxygen shrouded injection in the jetting regime, and this would then suggest that retrofitting conventional low-pressure, side-blowing tuyeres of bath smelting and converting reactors with sonic injectors in jetting regime certainly appears as a valuable option for process intensification with higher oxygen enrichment, without major process changes or large capital expenditure, i.e., no need for full reactor replacement.  相似文献   

10.
The software that simulates the flow, temperature, concentration and the heat generation field in the Outkumpu flash smelting furnace, was developed by a numerical method of the particle-gas flow together with some chemical reaction models. Many typical operating conditions were chosen for simulation in order to obtain the effect of the distribution air, process air, central oxygen and the oil-burner position etc. The concepts about optimum op-eration, 3C(concentration of high temperature, high oxygen and laden concentrate particles), are concluded from these simulated results, which have been checked primarily by operational experiments.  相似文献   

11.
分析4种闪速连续炼铜炉型的本质特性,提出将闪速连续炼铜过程视为由相对独立的闪速造锍熔炼过程和连续吹炼造铜过程构成,分别建立闪速造锍熔炼多相平衡数学模型和连续吹炼造铜局域平衡数学模型,并通过中间物料的传递将两模型有机结合,从而构建完整的闪速连续炼铜过程热力学模型。运用此模型,考察炉型结构对闪速连续炼铜过程的粗铜生成条件、Fe3O4行为、铜在渣中损失以及铜直收率等因素的影响。结果表明:相对于其他3种炉型,甩渣吹炼双烟道D型炉是比较理想的连续炼铜炉体;对于闪速连续炼铜,造锍熔炼段和铜锍吹炼段宜在相对独立的分区进行,各自炉渣和烟气也应分开排出炉体。  相似文献   

12.
Inco pioneered the use of tonnage oxygen in nonferrous metallurgy when it commissioned the first industrial oxygen flash smelting process for the treatment of copper concentrates in the early 1950s. This was followed by other applications of oxygen such as the enrichment of reverberatory furnace and Peirce-Smith converter blasts; oxy-fuel smelting in reverb furnaces; and, very recently, flash conversion of chalcocite to copper. Inco is currently implementing a sulfur dioxide abatement project designed to reduce SO2 emissions from the smelter by 60 percent (to 265 kt) in 1994. At that time, oxygen consumption at the smelter will reach about 1.7 t O2/t Cu+Ni. Oxygen smelting and converting technology will lead toa substantial decrease in the use of fossil fuels and to the generation afhigh-strength SO2 off-gases suitable for cost-effective fixation in a new acid plant.  相似文献   

13.
研究铜冶炼过程Sb的反应机理,分析Sb在4种典型铜冶炼工艺中多相分配差异。建立富氧底吹铜冶炼工艺的多相平衡模型,研究原料中Cu、S和Sb含量对Sb多相分配比的影响。同时,应用该模型研究铜锍品位、富氧浓度、熔炼温度和氧矿比(标准状态下氧气流量与精矿加料速率之比)等工艺参数对Sb分配行为的影响。结果 表明,计算数据与实际生产结果和文献数据吻合良好。提高精矿中Cu含量、降低S和Sb含量,提高铜锍品位、富氧浓度和氧矿比,同时适当降低冶炼温度,有利于Sb向炉渣中定向富集。模拟结果可为复杂资源清洁高效处理及伴生元素综合回收提供理论指导。  相似文献   

14.
This paper describes the successful test operation of a 50 t/h concentrate feed rate (or on the anode copper basis 9000 tlm) with the Mitsubishi Process. Particular emphasis is given to the analyses of the furnace capacity by the measurement of flow pattern and oxygen potential. Smelting rate on the unit hearth area of the smelting furnace is now one-ton of concentrate/m2·h. The results of the analyses show the further potential of the furnace capacity of the process.  相似文献   

15.
Magnesia–chromite refractory has been extensively used in the copper-making industry. It is necessary to understand the degradation mechanisms of the current refractory to develop new refractories. In the present study, post mortem refractories from a smelting furnace were analyzed and compared with the results of static corrosion tests on magnesia–chromite refractories in the laboratory at high temperatures. The microstructure and phase composition were carefully investigated by electron probe x-ray microanalysis to understand the degradation mechanisms of the magnesia–chromite refractory in copper smelting conditions. The degradation mechanisms between the magnesia–chromite refractory and the copper smelting slag and CuO transformed from matte are discussed based on the analysis of the post mortem refractory samples and laboratory tests. These results will enable optimization of the industrial process and development of new refractories for copper smelting furnaces.  相似文献   

16.
The ISASMELT? process is a top submerged lance (TSL) bath smelting technology which has been developed and optimized over the last 25 years. By the end of 2011, the total installed capacity of the ISASMELT technology will exceed 9,000,000 tonnes per year of feed materials in copper and lead smelters around the world. Commercial plants, operating in Belgium and Germany, are also batch converting copper materials in ISASMELT furnaces. This TSL technology is equally effective for continuous converting processes, whereupon it is called ISACONVERT?. Xstrata Technology (XT) has recently patented a new ISACONVERT process for the continuous converting of nickel/platinum group metal (PGM) mattes using the calcium ferrite slag system. This paper outlines the development of this new process and presents a conceptual flowsheet for how it can be integrated into an existing nickel/PGM smelter.  相似文献   

17.
JOM - Based on the emf measurements of the galvanic cell (Fe, MgO/O in slag or matte) and the equilibrium calculations, the oxygen pressure in a copper flash smelting furnace at Toyo smelter is...  相似文献   

18.
To understand complex behavior in the smelting furnace of Mitsubishi continuous process for copper refining, comprehensive 3-D numerical simulation and field experiment were performed. The numerical simulation results showed that strong and complex velocity fields of gas, matte and slag were generated in the furnace and large amounts of matte and slag were splashed into the gas area. Temperature measurements at the lance during field operation revealed that wide range of temperature variation appeared depending on the injection condition of concentrates. Numerical simulation results provided good agreements with experiments results and showed that the chemical reaction induces temperature increase during gas injection period. On the other hand, lance temperature is decreasing because of cold concentrates during gas and particles injection period. From the FFT analysis results, the fluctuations of matte and slag volume fraction near the lance induce temperature fluctuations of the lance. Through these experimental and simulation results, it was revealed that the lances in the smelting furnace were exposed to severe conditions such as high temperature, repeated large temperature change and cyclic change of large temperature gradient across the thickness.  相似文献   

19.
李兰国  付海昌 《铸造工程》2014,(2):19-22,25
为控制碱性电弧炉冶炼ZG25MnCrNiMo钢的化学成分,总结了熔炼过程中合金化元素、杂质元素及非金属夹杂物的变化趋势,分析了ZG25MnCrNiMo{N4~学成分的影响因素,并阐述了冶炼过程中各元素的控制方法。通过合理操作,有效控制ZG25MnCrNiMoSN冶炼过程,改善钢液质量,进而提高产品质量。  相似文献   

20.
基于遗传算法的铜闪速熔炼过程控制优化   总被引:8,自引:0,他引:8  
基于已建立的铜闪速熔炼神经网络模型,以能耗费用最低为目标,在工艺指标控制范围内,采用遗传算法对铜闪速熔炼过程的工艺参数进行了仿真优化计算。结果表明,当空气、分配风、工艺氧和中央氧的市场价格折合比值分别为0.05、0.1、0.4和0.45,精矿量为128 t,其成分(质量分数)为Cu 20.61%、S 27.59%、Fe 24.72%、SiO2 11.64%和MgO 1.39%时,铜闪速熔炼工艺参数的遗传优化值为空气15 011 m3、分配风1 302 m3、工艺氧17 359 m3、中央氧1 000 m3、熔剂13.6 t;与实践平均值相比,若采用优化工艺参数控制,熔炼能耗费用可降低4.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号