首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolution of Ti (C, N)-based cermet microstructures   总被引:2,自引:0,他引:2  
Two series of Ti(C, N)-based cermet materials originating from the same chemical composition but with dif-ferent grain size distribution and sintered to different stages of the sintering cycle have been studied using SEM, TEM,EDX, and XRD. Much of the surrounding structure is formed during solid state sintering. During the solid state sintering, at first, the Mo and W rich (Ti, Mo, W)C inner rim is formed by the interaction among TiC, WC, and Mo2C; then the Mo and W lean (Ti, Mo, W)(C, N)outer rim is formed. During the liquid phase sintering, the outer rim of coarse grains grows rapidly throw a solution-reprecipitation process; aLso coarse grains grow by particle coalescence. The interface between coarse grain outer rim and binder is flat (crystal surface).  相似文献   

2.
Microstructure of model cermets with high Mo or W content   总被引:13,自引:0,他引:13  
The microstructure of (mol%) TiC–18TiN–24Ni–(10–29)WC and TiC–18TiN–24Ni–(5–14)Mo2C has been investigated using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM) and analytical electron microscopy (AEM). When the WC content in the raw materials was increased the W content in the outer rim of (Ti, W)(C, N) grains increased until it had a composition similar to that of the inner rim. If the WC content was high undissolved WC was present after sintering. When the Mo2C content in the raw materials was increased, the volume fraction of inner rim increased and the Mo content in both inner and outer rim increased. Thermodynamical calculations on the Ti–W–C–N system suggest that the inner rim is formed during solid state sintering when there is an open porosity and thus a low nitrogen activity. The composition of the outer rim can be explained by the equilibrium at the sintering temperature if the volume fraction of undissolved Ti(C, N) cores is subtracted. Calculations on the Ti–Mo–C–N system show that (Ti, Mo)(C, N) decomposes into two phases with different Mo content and that the Ti(C, N) cores might be regarded as a stable phase.  相似文献   

3.
Four alloys manufactured from different combinations of powders (TiC + TiN + WC; Ti(C,N) + WC; (Ti,W)C + TiN and (Ti,W)(C,N)) were studied using X-ray diffractometry, optical microscopy (OM), scanning electron microscopy (SEM) and analytical electron microscopy (AEM). The alloy manufactured from binary powders had a smaller grain size and a more inhomogeneous microstructure than the other alloys. The alloys manufactured with WC contained an inner rim around Ti(C,N) cores, as well as W-rich cores. Thermodynamic calculations suggest that these are formed during solid-state sintering at 900°C in a low nitrogen activity. The outer rim had a composition that is in good agreement with calculations of the equilibrium during liquid phase sintering at 1450°C.  相似文献   

4.
After liquid phase sintering, core-rim microstructure occurs in the grains of Ti(C,N)-based cermets. The mechanisms of the microstructural evolution during different sintering stages were investigated here. Our theoretical analyses show that the rim thickness of a grain is relatively independent of its initial radius when rim formation is dominated by Ostwald ripening during dissolution-reprecipitation stage, whereas it increases linearly with its initial radius when grain growth during subsequent cooling stage is the dominant mechanism. A geometric analysis via cross-sectioning technique is developed to identify dominant rim formation mechanism. Experiments with Ti(C,N)-based cermets show that rim formation is dominated by grain growth at low sintering temperatures and by Ostwald ripening at sufficiently high sintering temperatures.  相似文献   

5.
Ti(CN)-based cermets were synthesized from Ti(CN)WCMo2CTaCNiCo composite powders by vacuum-low pressure sintering. The phase evolution and the formation of core–rim structure in Ti(CN)-based cermets were systemically investigated during difference reaction stages at 950–1450 °C. The results show that the secondary carbides such as Mo2C and TaC are begun to dissolve at 950 °C, finished at 1150 °C, and the solution temperature of WC phase is range from 1150 to 1300 °C, which are result in increase of the cermets lattice constant. At the same time, the inner rim is also formed, and Ti(CN)-based cermets are composed of (Ti, W, Mo, Ta)(CN) and Ni/Co solid solution phase. While at 1350 °C, it was found that the outer rim began to precipitate from the liquid phase with the metal binder. With increase of sintering temperature, mechanical properties of cermets improved obviously were related intimately to the increase of outer rim thickness.  相似文献   

6.
采用真空烧结工艺制备微米级Ti(C,N)基金属陶瓷。通过XRD、SEM等研究了液相烧结后,冷却方式对微米级Ti(C,N)基金属陶瓷显微组织、力学性能的影响。试验结果表明,烧结后随炉冷却,烧结体可获得较均匀的显微组织,且环形相完整且厚度适中;冷却时,在液相阶段增加保温台阶,晶粒有所长大且有发生团聚现象发生,环形相变厚,导致材料的力学性能下降。微米级Ti(C,N)基金属陶瓷烧结后合适的冷却方式为无保温、随炉冷却。  相似文献   

7.
During sintering of cermets the dissolution and precipitation of dissolved MeCs lead to the well-known formation of a core-rim structure. To investigate the microstructural evolution during sintering the sintering process was interrupted at different temperatures and the formation of the core-rim structure traced. EDS mappings and point scans as well as 3D-FIB tomography scans were carried out to study the distribution of added MeCs like Mo2C or WC on ion-beam prepared samples. The studied cermet consisted of a Ti(C,N) hard phase with a mixed Co and Ni binder and added Mo2C. The results show i.e. that within the rim area not only a high amount of MeC exists, but also that during the final stages of sintering in some grains binder inclusions within the rim area and Mo inclusion within the core appear.  相似文献   

8.
The effect of vanadium carbide (VC) addition on the sinterability and the microstructure of ultrafine Ti(C, N)-based cermets consolidated through spark plasma sintering (SPS) was systematically investigated using optical microscope, scanning electron microscope (SEM) with X-ray energy dispersive spectrometer (EDS), X-ray diffractometer (XRD) and transmission electron microscope (TEM). Our results reveal that the addition of VC increases the porosity of sintering body and depresses the sinterability of Ti(C, N)-based cermets. It is also found that the VC addition has a significant influence on the microstructure of ultrafine Ti(C, N)-based cermets, which inhibits the dissolution of titanium-containing compounds and the formation of inner rim phase and outer rim phase, thus preventing from grain growth. Owing to the depressed dissolution and precipitation, nitrogen liberation is mitigated, therefore resulting in less amount of graphite phase in the samples. In substance, VC changes the solubility of metallic elements in the binder, which makes more elements of Mo and W to be reserved in the binder and thus greatly decreases the content of titanium dissolved into the binder. The re-building solubility rule determines the development of phases and microstructure.  相似文献   

9.
为改善Ti(C,N)基金属陶瓷刀具的抗冲击性能,从烧结碳势对表层粘结相分布影响的角度出发,制备了不同压力CO冷却的Ti(C,N)基金属陶瓷刀片.借助扫描电镜和能谱仪研究了CO冷却下金属陶瓷表层的组织结构以及粘结相分布情况.对比了CO冷却和真空冷却对金属陶瓷刀片切削性能的影响.结果表明:CO冷却对金属陶瓷常规性能影响微小...  相似文献   

10.
Ti(C, N)-based cermets were treated using hot isostatic pressing (HIP) at 1423 K in nitrogen. The microstructures compared with the as-sintered cermets were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, and electron microprobe analysis. It was found that high nitrogen activity in the surface zone resulted in the formation of gradient structure. Approximately 20-1am-deep, nitrogen-rich and titanium-rich hard surface zone was introduced by the heat treatment. The nitrogen activity was the driving force that caused the transportation of the atoms through the binder, titanium towards the surface, and tungsten and molybdenum inwards. In the surface zone, the particle size became fine, the inner rim disappeared, and the volume fraction of the outer rim and the binder phase considerably reduced. Small grains of TiN, WC, Mo2C, and nitrogen-rich carbonitlide phases formed in the surface zone during the heat treatment, improving the tlibological property of the heat-treated cermet.  相似文献   

11.
R. S. Sundar  S. C. Deevi   《Intermetallics》2004,12(12):1311-1316
Isothermal oxidation behavior and the nature of oxide layer formed during oxidation of FeCo–2V alloy were characterized in the temperature range of 500–600 °C. Oxidation kinetics of the alloy follows a parabolic rate law. SEM and XRD studies indicate the formation of an iron rich outer oxide layer and an inner solute rich layer containing cobalt and vanadium rich oxides. The oxidation mechanism of the FeCo–2V alloy is similar to that of low alloy steels. During the initial stages, preferential oxidation of iron and cobalt occurs at the alloy surface and leads to the formation of a solute rich inner layer. Continued oxidation occurs through oxidation of iron and cobalt at the outer layer and internal oxidation of inner layer. The iron rich oxide layer formed at the surface on oxidation of FeCo alloy is semi-conducting in nature and may not provide the necessary insulating barrier required at the surface to minimize eddy current losses during A.C. applications.  相似文献   

12.
X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used to observe and investigate the microstructure and fracture morphology of Ti(C,N)-based cermets added with NiTi alloy powder. A new ceramic phase is found with the structure of gray core, black inner rim, noncontinuous white inner rim and continuous gray outer rim. The fracture toughness and the transverse rupture strength have a distinct trend to increase with the increase of NiTi powder content in Ti(C,N)-based cermets, while the hardness has the opposite trend. Grain refinement and the increase of metallic phase are the dominant strengthening and toughening mechanisms. Additionally, the crack deflection and bridging may play an active role in improving the properties, as well as the special structure of large metallic binder containing many small ceramic particles. In cermets with a higher content of NiTi powder, the microcrack and the crack closure effect induced by martensitic transformation are advantageous to the mechanical properties.  相似文献   

13.
The high-temperature oxidation behavior of pure Ni in air and Ar with and without 30?vol%H2O at 1,000?°C was investigated to understand the effects of water–vapor on the resulting oxidation kinetics and scale structures. It was found that water–vapor significantly affected the morphology and scale structure of NiO. A duplex NiO scale with a powder-like outer and dense inner NiO layer developed when the Ni was oxidized in atmospheres containing water–vapor. The grain size of the dense inner NiO layer was much smaller than that formed in dry atmospheres. The growth of the powder-like NiO required outward diffusion of Ni and its continued formation occurred at the interface between the powder and dense NiO layers. The dense inner NiO layer grew outward and incorporated the powder-like NiO particles and the resulting grain size of the inner layer was smaller in the presence of water–vapor. The water–vapor is speculated to have prevented sintering of NiO particles during growth of the NiO scale.  相似文献   

14.
The properties of oxide film grown on nickel in air at 100–400°C were studied using ellipsometric and electrochemical methods. It was found that during oxidation of nickel at 100–250°C an oxide film is formed which grows according to a logarithmic law. The film formed at higher temperatures is composed of two successive layers. The inner layer exhibits properties identical to the oxide film grown at 100–250°C, while the outer layer, which grows according to a parabolic law, shows different properties. The thickness of the oxide film depends upon both the purity and the pretreatment of the nickel.  相似文献   

15.
WC含量对超细Ti(C,N)基金属陶瓷组织和性能的影响   总被引:1,自引:0,他引:1  
金之铂  刘宁  詹斌  李其龙 《硬质合金》2010,27(5):269-273
采用真空烧结法制备超细Ti(C,N)基金属陶瓷,研究WC含量0wt%~20wt%对超细Ti(C,N)基金属陶瓷显微组织和力学性能的影响。通过SEM观察组织形貌发现,添加WC后金属陶瓷的组织出现了典型的芯壳结构,并且芯壳产生了明显细化,但当WC添加量超过15wt%时,环形相碳化物粗化、变脆。伴随着WC添加量,抗弯强度、硬度、断裂韧性均呈现先上升再下降的趋势。在WC添加量15wt%时,抗弯强度达到1262MPa,维氏硬度值达到16.3HV,金属陶瓷的综合力学性能达到最优。  相似文献   

16.
Steam oxidation resistance and thermal stability were studied at 650 °C for a coating with an outer Ni2Al3 layer and an inner Fe2Al5 layer formed on P92 steel surface. The parabolic rate law of oxidation was obeyed only in less than 2000 h with positive deviations occurring at longer oxidation times. The outer layer of the coating was transformed to NiAl during oxidation, but it remained stable once it was formed. The mechanisms for the enhanced thermal stability were discussed and a simple approach to enhancing the lifetime of the coating was proposed.  相似文献   

17.
为解决TiAl合金成形困难的问题,以Ti、Al元素粉末为原料,采用Micro-FAST制备Ti-47Al合金,研究不同温度(7001050℃)对TiAl合金组织和性能的影响,并且探究了烧结过程中颗粒的迁移机制。结果表明,700℃烧结时不能形成典型组织,主要相为TiAl3;800℃及以上烧结时为岛状组织,主要相为大量的TiAl和少量的Ti3Al;在1050℃烧结时具有最佳的综合力学性能。烧结过程由多种扩散机制共同控制,随着烧结的进行,依次为蒸发-凝聚、体积扩散、晶界扩散和表面扩散。  相似文献   

18.
Spark plasma sintering (SPS) and conventional vacuum sintering (VS) were employed to fabricate ultrafine Ti(C,N)-based cermets. The shrinkage behavior, microstructure, and porosity and mechanical properties of the samples fabricated by SPS were compared with those of the samples sintered by VS using optical microscopy, scanning electron microscopy, universal testing machine, and rockwell tester. The results are as follows: (1) The shrinkage process occurred mainly in the range of 1000-1300℃ during the VS process, and only a 0.2% linear shrinkage ratio appeared below 800℃;during the SPS process, a 60% dimensional change occurred below 800℃ as a result of pressure action. (2) By utilizing the SPS technique, it is difficult for obtaining fully dense Ti(C,N)-based cermets. Due to the much existence of pores and uncombined carbon, the mechanical properties of the sintered samples by SPS are inferior to sintered ones by VS. (3) grain size of the samples sintered by SPS is still below 0.5μm, but not by VS; because of low sintering temperature, there are no typical core/rim structures formed in the sintered samples by SPS1; the main microstrures of the sintered samples by SPS2 are a white core/grey shell sstructure, whereas by VS show a typical black core.grey shell structure.  相似文献   

19.
The corrosion behavior of two Ni-Al alloys and four Ni-Nb-Al alloys was studied over the temperature range of 600° C to 1000° C in a mixed-gas of H2/H2O/H2S. The parabolic law was generally followed, although linear kinetics were also observed. Multiple-stage kinetics were observed for the Ni-Al alloys. Generally, the scales formed on Ni-13.5Al and Ni-Nb-Al alloys were multilayered, with an outer layer of nickel sulfide with or without pure Ni particles and a complex inner scale. The outer scale became porous and discontinuous with increasing temperature. Very thin scales formed on Ni-31Al. The reduction in corrosion rate with increasing Al content is ascribed to the formation of Al2O3 and Al2S3 in the scale. Platinum markers were found at the interface between the outer and inner scales.  相似文献   

20.
TiAl alloys incorporated in (0,3,5,10) wt.% TiB2 dispersoids were manufactured via mechanical alloyingspark plasma sintering (MA-SPS), and their cyclic oxidation characteristics were studied at 800, 900 and 1000°C in air. The cyclic oxidation resistance of the prepared TiAl-TiB2 composites effectively increased with increases in TiB2 content. The oxide scale formed consisted of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner (Al2O3+TiO2) mixed layer. The scale adherence was relatively good, and much thinner oxide scales, when compared to TiB2-free TiAl alloys, were formed on the prepared composites. The incorporated TiB2 dispersoids oxidized to TiO2 and B2O3 which evaporated during oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号