首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 INTRODUCTIONMagnesiumisthelightestmetallicstructurema terialwithhighspecificstrengthandthereforeiswidelyusedinautomotive ,electronicsandaerospaceindustries[1,2 ] .However ,magnesiumoftenshowsinsufficientplasticityatroomtemperatureduetoitsHCPstructurewithlessindependentsystemsofbasalslip .Toenhanceformabilityofmagnesium ,ahigherdeformingtemperatureisusuallyusedwithtwopur poses .Thefirstistoactivatenewslipsystemsbesidesbasalslip ,sothatmorethanfiveindependentslipsystemscanbeprovided ,be…  相似文献   

2.
The hot-deformation behaviors of three types of AZ31 samples,extruded sheet,hot rolled sheet and cast rod were studied. These samples had different initial grain size and texture.Compression deformation of these samples was carried out using a Gleeble 1500D under a series of thermal deformation conditions.Microstructure and texture of the initial and deformed samples were examined using electron backscatter diffraction(EBSD) techniques.The flow curves for all these three types of samples shifted upward w...  相似文献   

3.
Shear bands in magnesium alloy AZ31   总被引:6,自引:0,他引:6  
During deformation of magnesium at low temperatures, cracks always develop at shear bands. The origin of the shear bands is the { 1011 } twinning in basal-oriented grains and the mobility of this type of twin boundary is rather low. The most frequent deformation mechanisms in magnesium at low temperature are basal slip and { 1012 } twinning, all leading to the basal texture and therefore the formation of shear bands with subsequent fracture. The investigation on the influences of initial textures and grain sizes reveals that a strong prismatic initial texture of (0001) parallels to TD and fine grains of less than 5 8m can restrict the formation and expansion of shear bands effectively and therefore improve the mechanical properties and formability of magnesium.  相似文献   

4.
The dynamic recrystallization(DRX) and texture development, taking place during hot deformation of magnesium alloy AZ31 with a strong wire texture, were studied in compression at 673 K (0.73 Tm). Two kinds of samples were machined parallelly to the extruded and transverse directions of Mg alloy rods. New fine grains are evolved at original grain boundaries corrugated at low strains and develop rapidly in the medium range of strain, finally leading to a roughly full evolution of equiaxial fine grains. Kink bands are evolved at grain boundaries corrugated and also frequently in grain interiors at low strains. The boundary misorientations of kink band increase rapidly with increasing strain and approach a saturation value in high strain. The average size of the regions fragmented by kink band is almost the same as that of new grains evolved in high strain. These characteristics of new grain evolution process are not changed by the orientation of the samples, while the flow behaviors clearly depend on it. It is concluded that new grain evolution can be controlled by a deformation-induced continuous reaction, i.e. continuous dynamic recrystallization(DRX). The latter is discussed by comparing with conventional, i.e. discontinuous DRX.  相似文献   

5.
电场作用下AZ31镁合金的组织与织构的演变   总被引:1,自引:0,他引:1  
利用X射线衍射技术(ODF分析)并结合透射电子显微镜观察(TEM),研究了电场对A23l镁合金回复和再结晶的组织演变的影响,织构形成和发展的过程。结果表明:电场对镁合金回复和再结晶的作用不明显,使再结晶后的组织趋于均匀。再结晶织构的强度趋于一致。  相似文献   

6.
采用双螺旋流变铸造工艺制备了镁合金AZ31B的棒坯,利用Gleeble-3000型热/力模拟机研究了流变铸造和普通连铸棒坯在变形温度为250~400℃,变形速率为0.001~5 s-1,最大变形量为60%时的热压缩变形行为.分析了材料流变应力与变形量、变形温度和应变速率之间的关系,比较了两种不同铸造工艺对热塑性变形行为的影响.结果表明:流变铸造坯料在变形过程中的形变均匀性明显优于普通铸造的,因此不需预处理即可直接进行塑性成型;350℃以上热变形流变铸造坯料的变形抗力明显小于普通铸造坯料的;流变铸造使AZ31B合金的塑性加工性能得到改善;产生这种差别的主要原因是普通铸造坯料组织为粗大树枝晶,而流变铸造坯料组织为细小等轴晶.  相似文献   

7.
In order to obtain quantitative relationship between (0002) texture intensity and hot rolling conditions, conventional rolling experiments on AZ31 magnesium alloys were performed with 20%–40% reductions and temperatures within the range of 300–500 °C. Shear strain and equivalent strain distributions along the thickness of the rolled sheets were calculated experimentally using embedded pin in a rolling sheet. Rolling microstructures and textures in the sheet surface and center layers of the AZ31 alloys were measured by optical microscopy (OM), X-ray diffractometry (XRD) and electron back scatter diffraction (EBSD). Effects of the rolling strain, dynamic recrystallization (DRX) and twinning on the texture evolution of the AZ31 alloys were investigated quantitatively. It is found that the highest (0002) basal texture intensities are obtained at a starting rolling temperature of 400 °C under the same strain. Strain–temperature dependency of the (0002) texture intensity of the AZ31 alloy is derived.  相似文献   

8.
AZ31镁合金晶粒细化方法及机制研究现状   总被引:1,自引:0,他引:1  
系统介绍了AZ31镁合金晶粒细化方法及机制,综述了6种制备细晶镁合金大塑性变形方法的工艺特点和应用,展示了大塑性变形方法在AZ31镁合金加工中的应用前景。  相似文献   

9.
对AZ31镁合金铸轧板进行单道次热轧实验,利用光学显微镜、X射线和透射电镜对热轧过程中微观组织和织构的演变规律进行研究。结果表明:AZ31镁合金铸轧板具有较强的基面织构,当热轧变形量较小时,孪生是主要的变形机制;当热轧变形量较大时,位错滑移成为主要的变形机制;10%热轧态中出现的透镜状的{1012}宽孪晶使基面织构明显减弱;20%热轧过程中则出现{1012}、{1011}-{1012}两种不同形貌的孪晶;当变形量大于20%时,位错滑移大量开动,基面织构也显著增强,并在随后的退火过程形成细小均匀的再结晶组织。  相似文献   

10.
The mechanical properties and deformation mechanism of semi-continuously casting and as-extruded AZ70 magnesium alloys in a wide range of grain sizes(from 14 to 103μm)were investigated at 653 K and 1×10-3s -1.It is discovered that with reducing grain size,flow stress is weakened and plasticity is improved and even superplasticity exhibits.SEM and OM were used to clarify the deformation mechanism.It is suggested that dynamic recrystallization(DRX)is the coordination deformation mechanism of grain boundary sliding(GBS)for coarse grain,and cavity and intracrystalline slip are the coordination deformation mechanisms of GBS for fine grain.  相似文献   

11.
半连续铸造AZ31B镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
针对半连续铸造的AZ31B镁合金,采用Gleeble-1500热/力模拟机在变形温度为473~723 K、应变速率为0.01~10 s-1、最大变形量为80%条件下进行热/力模拟研究;结合热变形后的显微组织,分析合金力学性能与显微组织之间的关系。结果表明:当变形温度一定时,流变应力和应变速率之间存在对数关系,并可用包含Arrheniues项的Z参数描述半连续铸造的AZ31B镁合金热压缩变形的流变应力行为;实验合金在523 K时开始发生动态回复;随着变形温度的升高和应变速率的降低,动态再结晶开始对AZ31B合金的变形行为产生明显影响,在变形温度623 K以上的各种应变速率下,AZ31B镁合金易变形。  相似文献   

12.
AZ31镁合金高温热压缩变形特性   总被引:34,自引:5,他引:34  
在应变速率为0.005~5 s-1、变形温度为250~450℃条件下,在Gleeble-1500热模拟机上对AZ31镁合金的高温热压缩变形特性进行了研究.结果表明:材料流变应力行为和显微组织强烈受到变形温度的影响;变形温度低于350℃时,流变应力呈现幂指数关系;变形温度高于350℃时,流变应力呈现指数关系;变形过程中发生了动态再结晶且晶粒平均尺寸随变形参数的不同而改变,其自然对数与Zener-Hollomon(Z)参数的自然对数成线性关系;材料动态再结晶机制受变形机制的影响,随温度的不同而改变;低温下基面滑移和机械孪晶协调变形导致动态再结晶晶粒的产生;中温时Friedel-Escaig机理下位错的交滑移控制动态再结晶形核;高温时位错攀移控制整个动态再结晶过程.在本实验下,材料的最佳工艺条件是:变形温度350~400℃,应变速率为0.5~5 s-1.  相似文献   

13.
镁合金塑性变形机制   总被引:29,自引:0,他引:29  
针对不同晶粒尺寸的镁合金AZ31及添加稀土Ce或Nd的AZ31Ce/AZ31Nd的轧制变形行为,探讨了滑移、孪生和晶界滑动三种变形机制在镁合金塑性变形过程中的作用.结果表明:多种变形机制共同作用可提高镁合金在热变形时的塑性变形能力;合金热变形及再结晶退火后,在平均晶粒尺寸为50 μm以上的大晶粒中,变形机制以滑移和孪生为主,位错运动和增殖会使位错在变形过程中互相缠结、钉扎以及受晶界的阻碍而终止运动;孪生容易发生在不利于滑移的晶粒中促进塑性变形;在5~20μm的小晶粒中,晶界滑动机制发挥了重要作用,它可以协调大尺寸晶粒的变形而对提高镁合金变形能力起有益的补充作用.  相似文献   

14.
Grain size and texture changes of magnesium alloy AZ31 were studied in multidirectional forging(MDF) under decreasing temperature conditions.MDF was carried out up to large cumulative strains of 4.8 with changing the loading direction during decrease in temperature from pass to pass.MDF can accelerate the uniform development of fine-grained structures and increase the plastic workability at low temperatures.As a result,the MDFed alloy shows excellent higher strength as well as moderate ductility at room ...  相似文献   

15.
Compressive properties of AZ31 alloy were investigated at temperatures from room temperature to 543 K and at strain rates from 10-3to 2×10 4s-1.The results show that the compressive behavior and deformation mechanism of AZ31 depend largely on the temperature and strain rate.The flow stress increases with the increase of strain rate at fixed temperature,while decreases with the increase of deformation temperature at fixed strain rate.At low temperature and quasi-static condition,the true stress-true strain curve of AZ31 alloy can be divided into three stages(strain hardening,softening and stabilization) after yielding.However,at high temperature and high strain rate,the AZ31 alloy shows ideal elastic-plastic properties.It is therefore suggested that the change in loading conditions(temperature and strain rate) plays an important role in deformation mechanisms of AZ31 alloy.  相似文献   

16.
The production of magnesium alloy sheets normally involves several processing stages including hot rolling,cold rolling and intermediate annealing.The microstructure and texture evolution of AZ31 magnesium alloy sheets in different processing states were investigated by optical microscopy and X-ray diffraction technique.It is found that the microstructure of hot-rolled sheets is dominated by recrystallized equiaxed grains,while that of cold-rolled sheets is dominated by deformation twins.With final annea...  相似文献   

17.
AZ31 magnesium alloys were hot-extruded at 573 K and 623 K with extrusion ratio(λ) of 20,35 and 50.The corrosion and mechanical behavior of hot-extruded AZ31 were studied by galvanic tests and tensile tests.The microstructures of the studied AZ31 alloys were also investigated with optical microscope.The results show that,compared with the as-cast AZ31 alloy,the corrosion potentials of all hot-extruded AZ31 alloys are increased by 60 mV.Moreover,at the extrusion temperature of 623 K,the galvanic current o...  相似文献   

18.
研究不同Sr含量(0,0.3%,2.5%和5.0%,质量分数)的AZ31镁合金的铸态组织及含锶相。结果表明:在AZ31镁合金中添加Sr后,枝晶/晶粒尺寸变小,并且在0~5.0%的范围内,随着Sr含量的增加,枝晶细化且形态出现钝化现象,位于晶界/枝晶界的合金相分布更加弥散。添加0.3%Sr后,β-Mg17Al12相从未添加Sr的AZ31合金中的连续、不规则条状转变为不连续、不规则条状和/或细小颗粒状。在添加2.5%Sr和5.0%Sr的合金中发现了一些层片状共晶相,且后者的层片间距更加小。较高含量的Sr添加到AZ31镁合金中可以形成一种新的共晶和/或离异共晶三元Mg11Al5Zn4相,在添加2.5%Sr和5.0%Sr的合金中发现了Mg17Sr2相和Mg2Sr相。  相似文献   

19.
工业态AZ31镁合金的超塑性变形行为   总被引:33,自引:2,他引:33  
研究了工业态AZ31镁合金在温度 6 2 3~ 72 3K和应变速率 1× 10 -5~ 1× 10 -3 s-1范围内的超塑性变形行为。结果表明 ,工业态AZ31镁合金表现出良好的超塑性 ,其最高断裂延伸率达到 314%,应变速率敏感指数达 0 .4。显微组织观察和断口分析表明 ,工业态AZ31镁合金超塑变形主要由晶界滑动机制所控制 ,同时 ,动态再结晶也是合金超塑变形的一种协同机制。  相似文献   

20.
Hot deformation behavior of a spray-deposited AZ31 magnesium alloy   总被引:1,自引:0,他引:1  
The flow stress behavior of an as-spray-deposited AZ31 magnesium alloy with fine grains was investigated by means of compression tests with a Gleeble 1500 thermal mechanical simulator at isothermal constant strain rates of 0.01, 0.1, 1.0, and 10 s-1; the testing temperatures ranged from 623 to 723 K. It is demonstrated that a linear equation can be fitted between the Zemer-Hollomon parameter Z and stress in a double-log scale. The effect of deformation parameters on the behavior of recrystallization was analyzed. Dynamic recrystallization (DRX) generally occurs at a higher temperature and at a lower strain rate. The constitutive equation of the spray-deposited AZ31 magnesium alloy is elevated temperatures due to the fine grain, which provides a large amount of nucleation sites and a high-diffnsivity path for the atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号