首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用化学镀镍、镀钴、机械混合以及球磨几种方法对Zr-Ti系贮氢合金进行了表面改性。XRD结果表明,随着镀镍量的增加,合金越趋向微晶化;球磨时间越长,合金的衍射峰更加弥散化,充放电试验结果表明,当镀镍量为15%(质量分数,下同)时,贮氢合金在60mA.g^-1的电流密度下初始容量比未处理的合金高出130mAh.g^-1,经过6次~8次循环完全活化,最大放电容量可达400mAh.g^-1,随着镀镍量的增加,抗自放电能力增加;当镀钴量为5%时,贮氢合金在60mA.g^-1的电流密度下初始容量比未处理的合金高出40mAh.g^-1,经过7次~9次循环完全活化,最大放电容量可达390mAh.g^-1,但随着镀钴量的增加,初始容量上升较快,但放电容量在减少;而机械混合仅提高初始容量,对最大放电容量没有改善;球磨不仅改善贮氢合金的活化性能,并且其最大放电容量可达450mAh.g^-1。  相似文献   

2.
为了提高La_(0.94)Mg_(0.06)Ni_(3.49)Co_(0.73)Mn_(0.12)Al_(0.20)储氢合金的电化学性能,利用石墨烯与储氢合金研磨混合来对其进行表面改性处理。采用X射线粉末衍射仪(XRD)和扫描电子显微镜(SEM)分析合金的相结构和表面形貌。结果表明:添加石墨烯后合金的相结构并没有发生改变,石墨烯包覆在了合金的表面,增大了合金的比表面积,提高了合金的电化学性能。当添加质量分数为5%的石墨烯时,电极的最大放电容量可达到380.6mAh/g,容量保持率S50从69.5%提高到71.1%。添加石墨烯后,交换电流密度、极限电流密度和腐蚀电位均变大、电化学反应阻抗降低,说明电极的动力学性能得到改善。  相似文献   

3.
目的提高Ni/MH二次电池中AB3型储氢合金负极的充放电性能与动力学性能。方法合成一种双希夫碱作为表面改性剂,添加到AB3型储氢合金La0.73Ce0.18Mg0.09Ni3.20Al0.21Mn0.10Co0.60中,进行表面处理,考察添加不同含量的双希夫碱对合金充放电性能及动力学性能的影响。结果紫外与红外图谱显示,合成了目标双希夫碱。合金添加双希夫碱后,合金的相结构基本没有发生变化。表面处理后的合金与未改性合金相比,最大放电容量从375.3 m Ah/g增加至376.4 m Ah/g,相对变化不大,50次充放电循环后的放电容量保持率从62.6%提高到81.1%(AB3/5%双希夫碱电极)。经过表面处理后的合金电极,腐蚀电位Ec从-0.902 V增至-0.853 V,交换电流密度I0从53.8 m A/g增至142.5 m A/g,极限电流密度IL从511.6 m A/g增至872.8 m A/g,交流阻抗图显示电极与电解液间的电荷转移阻抗减小。结论添加了双希夫碱的合金,循环稳定性、腐蚀电位等综合电化学性能有了较大改善。合金添加双希夫碱后,对强碱电解液的抗腐蚀能力有所增强,这是一种行之有效的合金表面处理方法。  相似文献   

4.
A commercial AB5 hydrogen storage alloy was used as an additive to improve the electrochemical properties of Ml-Mg-Ni-based hydrogen storage alloys.The effect of AB5 alloy addition on the phase structure,charge/discharge characteristics,and electrochemical kinetics of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 alloy was investigated.The maximum discharge capacity of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 + 4 wt.% AB5 electrode reaches 406 mAh/g.The anodic polarization,cyclic voltammetry,and potential step discharge experiments show that the electrochemical kinetics of the electrode with additives was promoted,with the LaNi5 phase of AB5 alloy acting as electro-catalytic sites in the electrode alloy.The high-rate dischargeability of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 + 4 wt.% AB5 alloy electrode at 1100 mA/g reaches 60.9%,which is 9.4% higher than that of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 alloy electrode.The cycling stability of the electrode with 4 wt.% AB5 alloy has also been improved.  相似文献   

5.
本文对气态粉化后A2B7型贮氢合金La0.75Mg0.25Ni3.44Al0.06进行化学镀不同厚度Ni包覆处理.通过SEM观察,结果表明,包覆处理后镀层镍为球形颗粒且均匀弥散于合金表面.电化学测试结果表明,表面包覆镍处理的A2B7型合金电极放电容量有所降低,而循环稳定性有所提高.线性极化扫描和电化学阻抗谱等分析结果表明,表面包覆Ni处理后增大了合金电极的交换电流密度(I0),减小了电化学阻抗,改善了合金电极的动力学性能.  相似文献   

6.
Ni-La alloy coating was prepared by electrodeposition. The effect of cathodic current density on the La content of the alloy coatings was discussed. It is found that the content of La in the alloy increases with increasing the cathodic current density. The microstructures and codeposition mechanism of Ni-La alloy coatings were investigated by means of X-ray diffraction (XRD) and cyclic voltammetry (CV). The results demonstrate that the Ni-La alloy is FCC and codeposited by the induced mechanism. The hydrogen evolution reaction (HER) on the electrodeposited Ni-La alloy electrodes in alkaline solution was evaluated by Tafel polarization curves. It is found that La-Ni alloy coating exhibites much higher exchange current density for HER than pure Ni electrode, and that the exchange current density increases with increasing the La content of alloys. The good electrocatalytic activity for HER of this Ni-La alloy is attributed to the synergism of the electronic structure of La and Ni. The electrodeposited La-Ni alloys have a certain dectrochemical hydrogen storage capacity of 34- 143 mAh/g, which increases with increasing the La content of alloys.  相似文献   

7.
研究了退火温度对A287型La1.5Mg0.5Ni7.0合金的相结构和电化学性能的影响。结果表明:铸态合金由LaNi,相、LaMgNi4相、(La,Mg)Ni3相以及Gd2Co7型相组成,退火处理后,合金由Gd2Co7型相、Ce2Ni7型相和PuNi3型(La,Mg)Ni3相组成:随着退火温度升高,PuNi3型相的丰度减小,ce2Ni7型相的丰度增加,(La,Mg)Ni3相的a轴参数、c轴参数和晶胞体积均增大;经1073K保温24h退火后,合金电极具有最高的放电容量(391.2mAh/g),退火温度升高,合金的最大放电容量略有降低:合金电极的循环稳定性随着退火温度的升高不断提高,在1173K时合金电极经150次循环后其电极容量保持率C150/Cmax=82%;合金的高倍率放电性能(HRD)随退火温度升高略有增加,在1173K时,合金电极的HRD最好(HRD900=89.0%);交换电流密度I0、极限电流密度I1及氢扩散系数D随着退火温度的升高而增大。  相似文献   

8.
A novel method was applied to the surface modification of the metal hydride(MH)electrode of MH/Ni batteries.Both sides of the electrode were plated with a thin silver film about 0.1μm thick using vacuum evaporation plating technology,and the effect of the electrode on the performance of MH/Ni batteries was examined.It is found that the surface modification can enhance the electrode conductivity and decrease the battery ohimic resistance.After surface modification,the discharge capacity at 5C(7.5A)is increased by 212 mA.h and the discharge voltage is increased by 0.11 V,the resistance of the batteries is also decreased by 32%.The batteries with modified electrode exhibit satisfactory durability.The remaining capacity of the modified batteries is 89%of the initial capacity even after 500 cycles.The inner pressure of the batteries during overcharging is lowered and the charging efficiency of the batteries is improved.  相似文献   

9.
1 INTRODUCTIONInrecentyears,Ni/MHbatterythatisanewgenerationbatterywithhighenergydensitywasrapidlydevelopedafterwardsNi/Cdbattery .WiththeincreasinglymatureofNi/MHbatteryproductiontechnique,itbeginstojointhefieldofhighpowerandgreatcapacitycell,andbecomesgraduallythemostpromisinggreendynamiccellthatwasappliedtoelectromotivemotor .Thehydrogenstoragealloy ,asthekeymaterialofNi/MHdynamiccell,mustbecharacterizedbyitshighspecialcapacity ,highvolt ageplatform ,goodcatalyzeactivity ,longcycl…  相似文献   

10.
1 INTRODUCTIONTo increase the discharge capacity of nickel/metal-hydride ( Ni/ MH) batteries , new types ofhydrogen storage alloys with higher energy densityhave been paid considerable attention by research-ers . Particularly , recent investigations on theR-Mg-Ni (R=rare earth or Ca element) systemhydrogen storage alloys have led to a newseries ofternary alloys with a high hydrogen storage capaci-ty[1 3]. Kohno et al[4]found that the maxi mumdis-charge capacity of the La0 .7Mg0 .3Ni2 …  相似文献   

11.
采用中频感应熔炼制备Nd0.75Mg0.25(Ni0.8Co0.2)3.5储氢合金,在0.03 MPa氩气氛围进行退火,退火温度分别为850,900和950 ℃,保温时间均为7 h。分别对合金的电化学性能、气态储氢性能和合金的微观结构进行研究。结果表明,合金在退火热处理前后的相组成没有发生明显变化,主相均为Ce2Ni7型(Nd,Mg)2(Ni,Co)7相和CaCu5型NdNi5相。合金中晶粒尺寸随着退火温度的升高而增大,相界面则减少,退火消除晶格应力、增加成分均匀性、增加储氢容量;同时有部分Mg在热处理过程中损失导致储氢容量的下降。900 ℃热处理使得Nd0.75Mg0.25(Ni0.8Co0.2)3.5合金表现出较好的储氢性能,最大电化学放电容量为359 mAh/g,合金电极在100次循环后容量保持率为90.3%,气态储氢容量达到1.65%(质量分数,下同)。  相似文献   

12.
用两步熔炼法制备TiV1.1Mn0.9Ni0.5-ZrCr2复合电极合金。XRD、EDS、ICP及EIS等分析结果表明:复合合金具有与母体合金相同的双相结构,但是两相的特征参数以及复合合金电极的热力学特性均发生了一系列变化;组分合金在复合过程中产生明显的协同效应;复合合金电极的最大放电容量达到457.2 mAh/g;循环稳定性、荷电保持率和高倍率放电等动力学性能均得到显著改善;1000 mA/g放电电流密度时,复合合金电极的高倍率放电性能是由电极/电解质界面上的电化学反应和合金体内氢的扩散混合控制  相似文献   

13.
采用LaNi5稀土合金作为催化剂,用化学气相沉积法(CVD)制备了碳纳米管。研究了含有5%碳纳米管的LaNi5稀土合金电极样品的电化学性能。测定了碳纳米管电极的电化学储氢性能。实验发现:含有碳纳米管的LaNi5稀土合金的电化学放电容量更高,当放电电流密度为100mA/g时,其电化学储氢量高达385mAh/g。其循环寿命也得到了较大改善。循环100次,放电容量仅下降15%。  相似文献   

14.
研究了不同的粘结剂材料及混合比例对镁镍非晶合金电极化学性能的影响。实验结果表明:铜粉和镍粉作为粘结材料时,材料种类及其比例的影响差别不大;分析认为是镍和铜本身的耐蚀性能、内阻的大小以及催化特性综合作用的结果。综合考虑以铜粉作为粘结剂且以2:1的比例混合时,效果较好。当钴粉作为粘结剂材料时,非晶合金电极的容量及循环稳定性大大改善,这可归因于钴本身具有一定的贮氢容量和在电解液中较稿的耐蚀能力。  相似文献   

15.
采用粉末烧结法制备了Ti2.8C0.2Ni2,Ti3Ni1.8C0.2和Ti3Ni2合金,并对其电化学性能进行了研究.结果表明:Ti2.8C0.2Ni2及Ti3Ni1.8C0.2合金在碱性电解液中具有较低腐蚀速率和较好抗粉化性能.因此,Ti2.8C0.2Ni2及Ti3Ni1.8C0.2合金的循环寿命相比Ti3Ni2合金有明显的改善,其容量保持率分别为66.4%和63%,远高于原Ti3Ni2合金(53.4%).此外,Ti3Ni1.8C0.2合金还具有较高的最大放电容量316.8 mAh/g (Ti3Ni2合金为305.3 mA/g).3种合金都具有优异的HRD性能,它们在电流密度为1100mA/g时仍能保持62%以上的HRD.用C取代后合金的HRD得到进一步提高,尤其是Ti3Ni1.8C0.2合金的HRD提升较多.  相似文献   

16.
采用真空电弧熔炼及热处理的方法制备La0.7Y0.3Ni3.4-ХMnХAl0.1(Х=0~0.5)合金,通过XRD、SEM、EDS和电化学测试等方法,系统地研究了Mn替代Ni对合金微观组织、储氢和电化学性能的影响规律。结果表明,退火合金微观组织由主相Ce2Ni7型相和杂相PuNi3型、CeNi3型及Ce5Co19型相组成,Ce2Ni7型主相的丰度随Mn含量增加呈先增大后减小变化规律。当Х=0.2时,主相的丰度达到最大值89.03%。增加Mn的含量有助于缓解合金的氢致非晶化倾向。随着Mn含量的增加,合金电极的放电容量逐渐升高,而充放电循环稳定性却逐渐降低,合金电极的最大放电容量和最佳循环稳定性分别为308.6mAh/g与95.09%。合金电极的反应动力学分析结果表明,氢原子在合金体相中的扩散为合金电极高倍率放电性能的动力学控制步骤。  相似文献   

17.
稀土对电沉积Ni-P合金镀层显微组织的影响   总被引:9,自引:0,他引:9  
研究了在镀液中添加稀土元素后Ni P合金镀层显微组织的变化。X射线衍射及透射电镜分析结果表明 ,在镀液中添加一定量的稀土元素 ,明显地促进了Ni P合金微晶组织向非晶态组织转变 ,从而提高Ni P合金镀层的耐蚀性。电化学极化曲线测试结果表明 ,稀土元素能够促进电沉积过程的阴极极化。由于稀土离子的特性吸附抑制了合金原子在电极界面的正常形核 ,因而促进了非晶组织的形成。  相似文献   

18.
对比研究了烧结法和熔炼法制备的Ti3Ni2合金的储氢性能。结果显示,烧结合金具有多孔特性,有利于提高合金的电化学储氢性能。烧结合金的最大放电容量Cmax为305mAh/g,其值远高于熔炼合金的Cmax(242mAh/g)。另外,烧结合金在电化学动力学方面也优于熔炼合金,这主要是由于采用烧结法可以改善氢在Ti3Ni2合金中的扩散,从而使氢的扩散系数(D)从7.16×10-10cm2/s(熔炼合金)提高到3.2×10-9cm2/s(烧结合金)。  相似文献   

19.
新型储氢合金电极Ti_3Ni_2的电化学性能   总被引:1,自引:1,他引:0  
研究了新型储氢合金电极 Ti3Ni2 的电化学性能。实验结果表明 :Ti3Ni2 合金电极的最大放电容量达到384.4m Ah/ g(35 3K) ,相当于 Ti3Ni2 H3.7;在 2 78K,最大容量为 145 .5 m Ah/ g,相当于 Ti3Ni2 H1 .47。高温条件下(35 3K)放电曲线有 2个平台 ,在温度比较低时 ,放电曲线只有 1个平台 ;与 Ml(Ni Co Mn A1) 5 合金相比 ,Ti3Ni2 合金电极的动力学性能不好。此外 ,温度对 Ti3Ni2 合金电极的电化学性能影响明显。在温度比较高的条件下 ,合金的放电容量、动力学特性、荷电保持能力均有大幅改善。  相似文献   

20.
系统研究了Co替代Ni对LaNi3.8型LaNi3.8-xCox(x=0.0,0.2,0.4,0.6)贮氢合金组织结构和电化学性能的影响。研究表明,所有合金都由LaNi5、Ce5Co19和Pr5Co19相组成。随着Co含量的增加,3个相的相丰度发生变化,而且单胞体积也相应的增加,这使得合金的放氢平台压降低到镍氢电池需要的范围(0.01~0.1 MPa)。与LaNi3.8相比,含Co合金的循环性能得到改善。LaNi3.4Co0.4具有最大的放电容量,这一点与固态放氢量一致。LaNi3.6Co0.2倍率放电性能最好,具有最大的交换电流密度(Io)和最小的电荷转移电阻(Rct)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号