首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model of a tunnel dryer for sultana grapes is presented and applied for the determination of size and optimal operating conditions of the dryer. The optimum condition is given by the minimization of heat consumption, expressed as the ratio of thermal load to production, with some constraints regarding the production rate of the dryer and the maximum permissible air temperature. The optimization variables are temperature and humidity of the drying air, and product loading thickness on the trays. The optimum condition requires the operation of the dryer on the maximum permissible air humidity, which corresponds to a high degree of recirculation of exhaust air. This can be accomplished using automatic control of fresh air and humid air inlet and exhaust dampers along the length of the dryer, during the entire drying cycle.  相似文献   

2.
A mathematical model of a tunnel dryer for the dehydration of grapes is presented and applied to the determination of optimal operating conditions of the dryer. The dryer is of semi-batch structure, operating with trucks and trays. The cycle period is determined by meeting appropriate quality specifications for the final product. The nominal conditions were evaluated bv suitably minimizing. the total fuel demand, expressed as fuel consumption to production capacity, under some constraints regarding the production rate of the dryer and the maximum permissible air temperature. An nominal air humidity value was evaluated suggesting a minimum cycle period value for the production capacity and fuel demand. The nominal conditions required operation of the dryer on the maximum permissible air temperature. The optimum operation was evaluated by maximizing the total profit resulting from the operation of the dryer. The optimization variables were temperature and humidity of the drying air stream. A charteristic case study of industrial grape was included to illustrate the effectiveness of the proposed approach.  相似文献   

3.
ABSTRACT

A mathematical model of a tunnel dryer for the dehydration of grapes is presented and applied to the determination of optimal operating conditions of the dryer. The dryer is of semi-batch structure, operating with trucks and trays. The cycle period is determined by meeting appropriate quality specifications for the final product. The nominal conditions were evaluated bv suitably minimizing. the total fuel demand, expressed as fuel consumption to production capacity, under some constraints regarding the production rate of the dryer and the maximum permissible air temperature. An nominal air humidity value was evaluated suggesting a minimum cycle period value for the production capacity and fuel demand. The nominal conditions required operation of the dryer on the maximum permissible air temperature. The optimum operation was evaluated by maximizing the total profit resulting from the operation of the dryer. The optimization variables were temperature and humidity of the drying air stream. A charteristic case study of industrial grape was included to illustrate the effectiveness of the proposed approach.  相似文献   

4.
The drying performance of multicylinder dryer section in a paper machine was investigated under various operating parameters: Inlet paper solid content (48–50%), inlet paper temperature (45–50°C), supply air temperature (100–90°C), and exhaust air humidity (75–85?g H2O/kg dry air). The variation in environmental conditions was also considered. In this study, an improved static model was utilized to study the influence of these operating parameters on paper drying. The model was constructed using sequential modeling approach based on the drying techniques of multicylinder dryer section of a paper machine. The calculated paper solid content leaving each paper drying module and energy use is in agreement with the measured results. The simulation results showed that higher paper solid content and temperature entering the dryer section, lower supply air temperature, and higher exhaust air humidity were favorable for drying performance within the studied range of these parameters.  相似文献   

5.
Knowledge of peanut drying parameters, such as temperature and relative humidity of the ambient air, temperature and relative humidity of the air being blown into the peanuts, and kernel moisture content, is essential in managing the dryer for optimal drying rate. The optimal drying rate is required to preserve quality and desired flavor. In the current peanut-drying process, such parameters are elusive in real time and are either not measured or only measured periodically by an operator. A peanut-drying monitoring system, controlled by an embedded microcontroller and consisting of relative humidity and temperature sensors and a microwave peanut moisture sensor, was developed to monitor drying parameters in real time. It was deployed during the 2014 peanut harvest season at a peanut buying point in central Georgia, USA. It was placed in 45-ft (13.7-m) drying semitrailers to monitor in-shell kernel moisture content, temperature of the drying peanuts, temperature, and relative humidity of the exhaust air from the peanuts and relative humidity of the air being blown into the peanuts in real time. In-shell kernel moisture content was determined with a standard error of performance of 0.55% moisture content when compared to the reference oven-drying method. Data from drying parameters were time-stamped and stored on a CompactFlash card every 12?s and were used to assess the efficiency of dryer control settings. Ambient air conditions were measured by an on-site weather station. Results of the study support the value of such a monitoring system and show that implementation of the system for dryer control has the potential for saving a buying point, in the current economical context, as much as $22,000 annually in costs of electric energy and propane.  相似文献   

6.
7.
Closed-loop drying systems are an attractive alternative to conventional drying systems because they provide a wide range of potential advantages. Consequently, type of drying process is attracting increased interest. Rotary drying of wood particles can be assumed as an incorporated process involving fluid–solid interactions and simultaneous heat and mass transfer within and between the particles. Understanding these mechanisms during rotary drying processes may result in determination of the optimum drying parameters and improved dryer design. In this study, due to the complexity and nonlinearity of the momentum, heat, and mass transfer equations, a computerized mathematical model of a closed-loop triple-pass concurrent rotary dryer was developed to simulate the drying behavior of poplar wood particles within the dryer drums. Wood particle moisture content and temperature, drying air temperature, and drying air humidity ratio along the drums lengths can be simulated using this model. The model presented in this work has been shown to successfully predict the steady-state behavior of a concurrent rotary dryer and can be used to analyze the effects of various drying process parameters on the performance of the closed-loop triple-pass rotary dryer to determine the optimum drying parameters. The model was also used to simulate the performance of industrial closed-loop rotary dryers under various operating conditions.  相似文献   

8.
The novel low-cost band thermodynamic dryer equipped with a solar collector, a parabolic focusing collector, a heat exchanger, screw fan, and a drying cabinet with a band was designed and tested. The maximum temperature in the solar collector reached 85°C, which was 55°C above the ambient temperature. The required drying time was 4.5 h, much reduced from the traditional solar drying time of 48 h. The final moisture content of the Roselle calyx was 12% w.b., which is the recommended storage moisture content. Measurements of ambient temperature and humidity, air temperature, and relative humidity inside the dryer as well as solids moisture loss-in-weight data are employed as a means to study the performance of the dryer. Solar drying was compared with conventional sun drying and heated air drying, using the following evaluation criteria: drying time, dried Roselle color, texture, taste, and production cost. For evaluation, a model-based Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology was used. After the evaluation, the proposed continuous solar dryer was found to be better than conventional drying and heated air drying due to slower drying rate and better quality of the dried Roselle.  相似文献   

9.
This study deals with the modeling and the search for the optimum production capacity of a tunnel-dryer of the Californian type. The model is obtained from the heat and mass transfer balances at two levels, the product (fruits) level and inside the tunnel itself. The optimum condition is given by the maximum production capacity of a plum dryer satisfying the final product quality. This choice is determined by the fact that a large amount of fruit must be dried in a short time to have a minimum of loss. Recirculation of a proportion of the exhaust air improves the dryer efficiently in terms of energy.  相似文献   

10.
This study deals with the modeling and the search for the optimum production capacity of a tunnel-dryer of the Californian type. The model is obtained from the heat and mass transfer balances at two levels, the product (fruits) level and inside the tunnel itself. The optimum condition is given by the maximum production capacity of a plum dryer satisfying the final product quality. This choice is determined by the fact that a large amount of fruit must be dried in a short time to have a minimum of loss. Recirculation of a proportion of the exhaust air improves the dryer efficiently in terms of energy.  相似文献   

11.
S. Pang 《Drying Technology》2001,19(8):1789-1805
Fibre drying is an important process in production of medium density fibreboard (MDF) which consumes a large amount of energy, affects product quality and, without appropriate control, causes environmental concerns. Based on fundamental knowledge of wood fibre-water relationships and heat/mass transfer, a mathematical model has been developed to simulate the MDF fibre drying processes. The model is able to predict fibre moisture content, air temperature and air humidity along the dryer length. After validation against the measured air temperature and humidity, the model has been extended to include both fibre drying and fibre conditioning, the latter occurring in the dry fibre conveyers. Due to potential benefits in reducing emissions of volatile organic compounds (VOCs) and in improving panel quality, lower drying temperatures are more desirable than higher temperatures. However, in order to achieve the target moisture content after drying, a higher air velocity is needed or a second-stage dryer is added. The model was employed to determine the air velocity required and to assist in designing a second dryer for further drying and recovery of moist vapour and heat. A further study was undertaken to investigate fibre drying or fibre conditioning in the fibre conveyers and, once again, the fibre drying model was used to determine the air conditions.  相似文献   

12.
《Drying Technology》2013,31(8):1789-1805
Fibre drying is an important process in production of medium density fibreboard (MDF) which consumes a large amount of energy, affects product quality and, without appropriate control, causes environmental concerns. Based on fundamental knowledge of wood fibre-water relationships and heat/mass transfer, a mathematical model has been developed to simulate the MDF fibre drying processes. The model is able to predict fibre moisture content, air temperature and air humidity along the dryer length. After validation against the measured air temperature and humidity, the model has been extended to include both fibre drying and fibre conditioning, the latter occurring in the dry fibre conveyers. Due to potential benefits in reducing emissions of volatile organic compounds (VOCs) and in improving panel quality, lower drying temperatures are more desirable than higher temperatures. However, in order to achieve the target moisture content after drying, a higher air velocity is needed or a second-stage dryer is added. The model was employed to determine the air velocity required and to assist in designing a second dryer for further drying and recovery of moist vapour and heat. A further study was undertaken to investigate fibre drying or fibre conditioning in the fibre conveyers and, once again, the fibre drying model was used to determine the air conditions.  相似文献   

13.
In this study, a steady-state model was developed to describe the paper drying process and to analyze pocket dryer conditions for a multi-cylinder fluting paper machine in Iran's Mazandaran Wood and Paper Industries. The machine has 35 cylinders grouped in three drying groups and the cylinders are heated from the inside by steam. The model is based on the mass and energy balance relationships written for fiber, air, and water in the drying section. In this research, the heat of sorption and its variations with paper temperature and humidity changes have been taken into account. Temperature and moisture variation of the paper web and cylinder surface temperature in the machine direction were predicted by the proposed model. Also, temperature and humidity of air in the drying pockets and hood exhaust were estimated by the proposed model. Moreover, the model can predict the evaporation rate and specific drying rate with sufficient accuracy in comparison with the TAPPI standard. Finally, the main modeling parameters were compared with the available operating data and the effectiveness of the developed model was verified through validations.  相似文献   

14.
S. Pang 《Drying Technology》2000,18(7):1433-1448
In the production of MDF, wet resinated fibre must be dried to its target moisture content, normally 9 to 11%, before compaction into a board by hot pressing. Fibre drying can be interpreted as an incorporated process involving gas-solid two phase-flow, inter-component transfer, and heat and mass transfer within the fibre. Based on these mechanisms, a mathematical model has been developed to simulate the MDF fibre drying process. From the model, fibre moisture content, air temperature and air humidity along the dryer length can be predicted and factors affecting the drying rate examined. The model can be employed to optimise drying conditions and to evaluate improvements in dryer design. A case study of drying improvement in reduction of dryer emissions and heat consumption is given to demonstrate the potential application of the developed dryer model.  相似文献   

15.
A spray dryer is the ideal equipment for the production of food powders because it can easily impart well-defined end product characteristics such as moisture content, particle size, porosity, and bulk density. Wall deposition of particles in spray dryers is a key processing problem and an understanding of wall deposition can guide the selection of operating conditions to minimize this problem. The stickiness of powders causes the deposition of particles on the wall. Operating parameters such as inlet air temperature and feed flow rate affect the air temperature and humidity inside the dryer, which together with the addition of drying aids can affect the stickiness and moisture content of the product and hence its deposition on the wall. In this article, an artificial neural network (ANN) method was used to model the effects of inlet air temperature, feed flow rate, and maltodextrin ratio on wall deposition flux and moisture content of lactose-rich products. An ANN trained by back-propagation algorithms was developed to predict two performance indices based on the three input variables. The results showed good agreement between predicted results using the ANN and the measured data taken under the same conditions. The optimum condition found by the ANN for minimum moisture content and minimum wall deposition rate for lactose-rich feed was inlet air temperature of 140°C, feed rate of 23 mL/min, and maltodextrin ratio of 45%. The ANN technology has been shown to be an excellent investigative and predictive tool for spray drying of lactose-rich products.  相似文献   

16.
S. Pang 《Drying Technology》2013,31(7):1433-1448
ABSTRACT

In the production of MDF, wet resinated fibre must be dried to its target moisture content, normally 9 to 11%, before compaction into a board by hot pressing. Fibre drying can be interpreted as an incorporated process involving gas-solid two phase-flow, inter-component transfer, and heat and mass transfer within the fibre. Based on these mechanisms, a mathematical model has been developed to simulate the MDF fibre drying process. From the model, fibre moisture content, air temperature and air humidity along the dryer length can be predicted and factors affecting the drying rate examined. The model can be employed to optimise drying conditions and to evaluate improvements in dryer design. A case study of drying improvement in reduction of dryer emissions and heat consumption is given to demonstrate the potential application of the developed dryer model.  相似文献   

17.
An even span solar greenhouse dryer was built and applied to dry Java tea (Orthosiphon aristatus) and Sabah snake grass (Clinacanthus nutans Lindau). Findings showed that the solar greenhouse dryer performs satisfactorily during clear weather except at nighttime and rainy day due to product rehydration which is heavily influenced by high relative humidity from ambient air. Integrating of heat pump into the solar greenhouse dryer has successfully reduced the room relative humidity by 10–15%. Also, heat pump has mitigated the product rehydration issue by maintaining room relative humidity at maximum of 65% throughout the drying period. The drying rate of Java tea was improved three to fourfold, i.e., from 0.004–0.008 to 0.018–0.025?g H2O/g DM min, whereas 10% of drying time was saved for both Java tea leaf and Sabah snake grass leaf with the assistance of heat pump system. Meanwhile, the supply of dry air from the heat pump system with a magnitude of 0.25–0.50?m/s helps in enhancing the drying rate of the herbs as well as minimizing the nonuniformity of drying temperature and relative humidity inside the solar greenhouse dryer.  相似文献   

18.
The purpose of the present work is to study the simultaneous heat and mass transfer between air and soybean seeds in a concurrent moving bed dryer, based on the application of a two-phase model to the drying process. The numerical solution of the model is obtained by using a computational code based on BDF methods (Backwards Differentials Formulas). The experimental data of air humidity and temperature and of seed moisture content and temperature at the dryer outlet are compared to the simulated values, showing a good agreement. This work also analyzes the effect of the main process variables (drying air temperature, air relative humidity, air velocity and solids flow rate) on the soybean seeds quality during drying. Empirical equations fitted to the experimental data are proposed for predicting the soybean seed quality (germination, vigor and fissures) as a function of the investigated variables.  相似文献   

19.
This study applied a partial differential equation model with newly-developed thin layer equations to simulate batch re-circulating dryers under different drying conditions, which are combinations of four parameters: drying air temperature, drying air absolute humidity, drying period duration, and tempering period duration. The moisture change and the drying rate, which were of particular concern with respect to the simulated data, were investigated. Validation drying tests were carried out in a lab scale re-circulating rice dryer. Two sets of experiment were performed involving different drying parameters to simulate re-circulating rice dryers which are extensively used in Asian countries. Comparing these two experimental data with two simulated drying curves respectively, it revealed they are quite consist with each other under the same drying conditions. Drying air temperature, drying air humidity, drying period duration and tempering period duration significantly influenced the drying rate. Under the same drying condition, the tempering period duration effect was insignificant to the drying rate in drying zone as the drying air humidity or temperature increased. And, a higher initial moisture content obtained higher time and energy efficiency for the re-circulating rice dryers.  相似文献   

20.
Abstract

The dynamic behavior of conveyor-belt dryers involving externally controlled heat and mass transfer phenomena has been studied via digital simulation. The investigation concerned an industrial dryer used for the moisture removal from wet raisins. The dryer consisted of three drying chambers and a cooling section, all involving the same conveyor belt. For each chamber, perfect temperature control was assumed for the drying air temperature, while its humidity was left uncontrolled. The effect of material temperature and moisture content at the entrance of the dryer and the drying air temperature on material temperature and moisture content at the exit of the dryer and the corresponding drying air humidity, have been explored by step forcing the disturbance and manipulated variables in the non-linear dryer model simulator. Results showed that material moisture content at the exit of the dryer is greatly affected by material moisture content at the entrance as well as by the drying air temperature. Reliable transfer functions for each process module were obtained by fitting several transfer function models on the simulated data using a least-squares approach. It was found that when input material moisture content could be instantly measured, the system responded slowly enough so that excellent control could be achieved for material moisture content at the exit of each chamber. In this case a Pi-feedback cascade temperature controller was used. When a 15 sec delay measuring sensor was introduced, poor performance was observed. A simplified lead-lag feedforward controller, added to the system, in conjunction with the primary Pi-feedback cascade controller, resulted in good control performance of the delay sensor system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号