首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titania–hydroxyapatite composites were prepared by soaking compacts of a powder mixture consisting of crystalline titania and calcium carbonate (vaterite) to form apatite in simulated body fluid (SBF). The apatite crystal formed on compacts in SBF at 37 °C within 2 days. The apatite-forming ability of the mixtures was much higher than that of titania crystals such as anatase or rutile on their own. Calcium carbonate (vaterite), which has high solubility in the aqueous solution, plays an important role in the apatite formation; the dissolution is suggested to increase the supersaturation of the apatite in SBF. Formation of titanium hydroxide groups, which may induce the apatite formation, is drastically promoted on the powder-compacts by the soaking in SBF, independently of the structures of the titania crystals (anatase or rutile). The apatite formation on the compact of the titania–calcium carbonate (vaterite) powder mixture containing the anatase phase occurs in a shorter period than that on the one of titania (rutile)–calcium carbonate (vaterite). Crystalline titania (anatase phase) is suggested to be particularly effective in inducing the apatite nucleation.  相似文献   

2.
We report on the initial and later stages of apatite formation from simulated body fluid on titania with different surface morphologies (compact or nanotubular) and different crystal structures (anatase or amorphous). The nanotubular layers were fabricated by electrochemical anodization in fluoride-containing electrolytes. The study investigates the enhanced apatite deposition on titania nanotubes. In the initial stages of apatite growth, more nuclei are formed on the nanotubular surface than on flat compact TiO2. While the crystallographic structure of the substrate plays a less important role than the morphology in the initial nucleation stages, it is of great importance in the later stages of apatite crystal growth. The nanotubular morphology combined with an anatase structure leads to the formation of apatite layers with a thickness of >6 nm in less than 2 days. No stable apatite layers can be observed on amorphous TiO2 films, neither on compact nor on nanotubular substrates.XPS, FT-IR and XRD measurements reveal that carbonated hydroxyapatite (CHA) of low crystallinity is formed on annealed nanotubular and compact titania.Electrochemically grown and annealed TiO2 nanotube arrays having anatase structure are expected to be a good precursor system for the formation of CHA and thus for the preparation of osseointegrative implants.  相似文献   

3.
Rutile titania nanocrystalline particles with high specific surface areas were directly prepared by thermal hydrolysis of titanium tetrachloride aqueous solution. The as-prepared rutile titania powder was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area analysis, and Fourier transform Raman and IR spectroscopies. Neither anatase nor amorphous titania could be detected in this titania powder by XRD, Raman spectroscopy, and high-resolution TEM. In the phenol degradation reaction, the rutile titania powder with an initial crystalline size of 7 nm was found to have higher photocatalytic activity than that of anatase titania with the same specific surface area. The rutile titania powders calcined at 300° and 450°C also showed a relatively high photocatalytic property. The high activity of the as-prepared rutile titania was attributed to the abundance of hydroxy groups in the powder, as was proven by thermogravimetric analysis data, which provided more active sites for the degradation reaction.  相似文献   

4.
Sol–gel and electrospinning techniques were incorporated to produce polyvinylpyrrolidone (PVP)/titanium (IV) oxide composite fibers from solutions containing PVP and titanium tetraisopropoxide, with or without aluminium nitrate as the source of aluminium dopant. Upon the calcination of the as-spun fibers, the neat and the aluminium-doped titania fibers were obtained. Increasing the calcination temperature resulted in the decrease in the fraction of anatase phase within the fibers, as well as the increase in titania crystallite sizes. The presence of aluminium dopant, however, was found to greatly affect both physical and chemical properties of the synthesized titania fibers. Aluminium nitrate accelerated condensation of titanium oxide species during the sol–gel process, which resulted in increased viscosity of the spinning solution and consequently affected the diameters of the as-spun fibers. Aluminium dopant also played the major roles in both regulating the nucleation rate during crystallization of titania and controlling the growth mechanism of titania crystallites. As a result, the aluminium dopant caused the crystallite size of titania to decrease and retarded phase transformation from anatase to rutile.  相似文献   

5.
We report an in situ TEM investigation of the growth and transformation in nanometer-sized titania powders. The powders were produced through precipitation of titanium tetrachloride under different pH conditions. The initial phase of the produced powders was amorphous or was a mixture of anatase and brookite according to the pH conditions. During calcination, the anatase particles grew and transformed into rutile. The transformation temperature increased with increasing pH value. In situ TEM observations showed that the anatase particles were absorbed into rutile, and then rutile particles grew by coalescence. Furthermore, small pores were observed to form in samples prepared with high pH from the effects of hydroxyl ions and zeta potential. Pore formation increased the surface area, which delayed the transformation and nucleation of rutile. This explains the difference of growth and transformation of titania powders produced under different pH conditions during calcination.  相似文献   

6.
An experimental investigation of flame synthesis of titania particles was conducted in premixed flames. The titanium precursor and silicon dopant used in this study were titanium tetraisopropoxide (TTIP) and hexamethyldisiloxane (HMDS), respectively. The objective of this study was to investigate the influence of flame condition, TTIP concentration, and HMDS on the phase composition and particle morphology of titania synthesized in flames. It was found that the anatase content of titania particles made in flames was appreciably increased by the increase of oxygen concentration in the oxidizer. The increase of flame temperature results in the decrease of anatase content. A significant increase in rutile content of titania particles was observed by increasing the particle residence time at high temperatures. The doping of HMDS in flames inhibits the transformation of anatase to rutile phase and, therefore, reduces the rutile content of product particles. Under the flame doped with low concentrations of HMDS, titania particles with SiO2 particle agglomerates attached were produced. Further increase of the HMDS concentration up to the Si to Ti molar ratio equal to 0.375 results in the formation of a large amount of SiO2 agglomerates in the product.  相似文献   

7.
以四氯化钛溶胶为前驱体,硝化后的碳管为载体,采用溶胶-水解法制得TiO2/碳管纳米复合材料。运用红外光谱、X射线衍射和透射电子显微镜等手段分别对硝化后的碳管和复合材料的晶相组成、形貌特征和显微结构等进行表征,结果表明,CNTs表面修饰了羟基、羧基等基团;样品由TiO2和碳管组成,且TiO2主要以锐钛矿晶型为主;TiO2颗粒呈椭圆形均匀负载在碳管外表面,平均粒径在7nm左右。  相似文献   

8.
Nanosized titanium dioxide photocatalysts with varying amount of anatase and rutile phases have been synthesized. Homogeneous precipitation of aqueous solutions containing TiOSO4 with urea was used to prepare porous spherical clusters of anatase TiO2. Photoactive titania powders with variable amount of anatase and rutile phases were prepared by heating of pure anatase in the temperatutre range 800–1150 °C. The structure evolution during heating of the starting anatase powders was studied by XRD analysis in overall temperature range of phase transformation. The morphology and microstucture characteristics were also obtained by HRTEM, BET and BJH. The spherical particle morphology of TiO2 mixtures determined by SEM was stable in air up to 900 °C. The photocatalytic activity of the sample titania TIT85/825 heated to 825 °C in air, contained 77.4% anatase and 22.6% rutile was higher than that nanocrystalline anatase powder. Titania sample TIT85/825 reveals the highest catalytic activity during the photocatalyzed degradation of 4-chlorophenol in aqueous suspension.  相似文献   

9.
Titania Nanoflowers with High Photocatalytic Activity   总被引:2,自引:0,他引:2  
Titania with nanostructures has attracted considerable attention due to its potential use in catalysts, gas sensors, photovoltaic cells, photonic crystals, etc. This paper reports the synthesis of titania nanoflowers by simply oxidizing pure titanium with hydrogen peroxide solutions containing hexamethylenetetramine and nitric acid at a low temperature of 353 K. Titania nanoflowers with the crystal structure of anatase or a mixture of anatase and rutile were obtained after a subsequent thermal treatment to crystallize the as-precipitated amorphous structure. Photocatalytic tests revealed an excellent photocatalytic property of the titania nanoflowers.  相似文献   

10.
We report fabrication of TiO2–ZrO2 nanostructured composite coatings by EPD-Enhanced MAO (EEMAO) technique on titanium substrates where especial emphasis was placed on improving the surface hardness of the substrates and establishing a microstructure-property correlation. Based on the XRD and the EDX results, the layers consisted of anatase, rutile, monoclinic zirconia, and tetragonal zirconia. It was observed that the anatase/rutile and tetragonal/monoclinic zirconia rations increased with the processing time and the electrolyte concentration. The zirconia content also increased with the processing time and the electrolyte concentration. XPS technique was also employed to further confirm the surface chemical composition and stoichiometry of the layers. A uniform distribution of zirconia across the titania matrix was evident in the SEM images. The surface hardness of the TiO2-ZrO2 composite layers was observed to increase with the zirconia concentration. Employing EEMAO technique, the surface harness of the titanium substrates was successfully improved from ∼190 Hv to ∼700 Hv.  相似文献   

11.
In this paper, the effect of titania particles preparation on the properties of Ni–TiO2 electrocomposite coatings has been addressed. Titania particles were prepared by precipitation method using titanium tetrachloride as the precursor. The titanyl hydroxide precipitate was subjected to two different calcinations temperatures (400 and 900 °C) to obtain anatase and rutile titania particles. These particles along with commercial anatase titania particles were separately dispersed in nickel sulfamate bath and electrodeposited under identical electroplating conditions to obtain composite coatings. The electrodeposited coatings were evaluated for their microhardness, wettability, corrosion resistance, and tribological behavior. The variation of microhardness with current density exhibited a similar trend for all the three composite coatings. The composite coating containing anatase titania particles exhibited higher microhardness and improved wear resistance. However, the corrosion resistance of the composite coating containing commercial titania powder was superior to that of plain nickel, Ni–TiO2 composite coatings containing anatase and rutile titania particles. The poor corrosion resistance of these composite coatings was attributed to the higher surface roughness of the coatings. This problem was alleviated by incorporating ball-milled titania powders. The composite coatings with higher surface roughness were modified with a low surface energy material like fluoroalkyl silane to impart hydrophobic and superhydrophobic properties to the coatings. Among these coatings, Ni–TiO2–9C coating exhibited the highest water contact angle of 157°.  相似文献   

12.
Gold catalysts were prepared on different allotropic phases of TiO2 using the colloidal deposition method. The supports were chosen in order to study the influence of the support structure on the catalytic activity of the final material. Furthermore, for the same allotropic modification of titania, materials with a different particle size distributions have been used to study the influence of the grain size of the support on the deposition of the colloid. Our results indicate that the activity of the final catalyst is not much affected by the variation of the titania structure, though the situation becomes different when the catalyst is calcined at different temperatures. In this case, pure anatase and rutile supported catalysts showed a lower thermostability than the one prepared using P25 titanium oxide (Degussa). Concerning the colloid immobilization on the support it was found that the most important parameter is the grain size of the support. In particular, the deposition of the colloidal gold particles is greatly enhanced in the case of supports composed of particles of few nanometers in size.  相似文献   

13.
Porous titania powders were prepared by hydrolysis of titanium tetraisopropoxide (TTIP) and were characterized at various calcination temperatures by nitrogen adsorption, X-ray diffraction, and microscopy. The effect of HCl or NH4OH catalysts added during hydrolysis on the crystallinity and porosity of the titania powders was investigated. The HCl enhanced the phase transformations of the titania powders from amorphous to anatase as well as anatase to rutile, while NH4OH retarded both phase transformations. Titania powders calcined at 500°C showed bimodal pore size distributions: one was intra-aggregated pores with average pore diameters of 3–6 nm and the other was interaggregated pores with average pore diameters of 35–50 nm. The average intra-aggregated pore diameter was decreased with increasing HCl concentration, while it was increased with increasing NH4OH concentration.  相似文献   

14.
An essential condition for an artificial material to bond to living bone is the formation of bonelike apatite on its surface in the living body. The bonelike apatite can be reproduced on the bone-bonding material even in an acellular simulated body fluid (SBF) with ion concentrations almost equal to those of human blood plasma. In the present study, the dependence of the apatite-forming abilities of sodium-containing titania gels in a SBF on composition and structure is examined. The sodium-containing titania gels are model substances produced on the surface layer of bioactive titanium metal prepared by sodium hydroxide solution and heat treatments. When sodium-containing titania gels are immersed in the SBF, Na+ ions incorporated in the gels are exchanged with the H3O+ ions in the SBF. This ion exchange causes an accompanying increase in the pH of the SBF and increases its ionic activity product, thus providing favorable conditions for apatite nucleation on the surfaces of the gels. Nevertheless, sodium-containing titania gels that do not contain anatase do not form apatite on their surfaces. Independent of the composition, the gels form apatite on their surfaces in the SBF, specifically when they contain anatase. These results imply that the Ti-OH groups on titania, which have been proposed to be responsible for the apatite formation, are effective for apatite nucleation when they are arranged in a specific structural unit based on the anatase structure.  相似文献   

15.
《Catalysis communications》2005,6(11):705-710
This present study revealed a dependence of rutile:anatase ratios in titania on the characteristics and catalytic properties of Co/TiO2 catalysts during CO hydrogenation. In this study, Co/TiO2 catalysts were prepared using various titania supports consisting of various rutile:anatase ratios of titania. In order to identify the characteristics, all catalyst materials were characterized using XRD, SEM/EDX, TPR, and hydrogen chemisorption. CO hydrogenation (H2/CO = 10/1) was also performed to determine the overall activity and selectivity. It was found that both activity and selectivity were altered by changing the rutile:anatase ratios in the titania support.  相似文献   

16.
《Ceramics International》2020,46(10):16310-16320
Memory structures play a basic role in providing integrated circuits of powerful processing capabilities. Even most powerful processors have nothing to offer without an accompanying memory and importantly, the development of mobile devices is dependent on the continual improvement of memory technology. Herein, we report the synthesis of TiO2 thin films on SSTOP (Pt/TiO2/SiO2/Si) substrate via physical vapour deposition process for the first time. The layers consisted of Si, SiO2, TiO2 and Pt, hence the SSTOP shorthand is used throughout the text. Three different phases of TiO2 thin films were obtained, i.e. amorphous, anatase and rutile phases, by controlling the reaction parameters which were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and Raman-scattering spectroscopy in order to understand the crystallographic, morphological, compositional and scattering properties. The detailed studies confirmed the formation of various crystal phases of titania. The grown thin films on SSTOP substrates were further utilized to fabricate resistive random access memory (ReRAM) devices and the initial electrical screening was performed on capacitor-like structures which were prepared using platinum top electrodes (diameter = 250 μm) on a 14 × 14 array metal contact mask. Current-Voltage (I–V) measurements were implemented employing a range of current compliances (IC). The detailed electrical characterizations revealed that the forming field for a switchable unipolar device was found to be greatest on rutile titania and lowest on the amorphous titania phase. Similarity, the resistive contrast was greatest on the rutile titania phase and lowest on the anatase titania phase.  相似文献   

17.
Crystalline TiO2 particles were produced in a tubular flow reactor by chemical vapor synthesis using titanium tetrachloride as a starting material in oxygen containing atmospheres. The dependence of particle size, morphology and crystalline phase of titania on temperature schedules including the reactor temperature, the oxygen preheated temperature and the product cooling measure were explored. It is found that there are two opposite effects of temperature on particle size and crystalline phase content. The particle size distribution, SEM and TEM of resulting powders show that the grain size is controlled by the relative magnitudes of the nucleation rate and growth rate, both of them being subject to the temperature schedules. XRD indicates that particles crystalline phase is predominately anatase and the rutile content increment is not consistent with temperature increase. Anatase titania can be converted to rutile by addition of crystal modifier AlCl3. The element analysis by EDS shows that Al enriches on the particle outer surface.  相似文献   

18.
The nature of the oxide on the surface of titanium and the Ti-6Al-4 V alloy after a number of recommended treatments has been examined by x-ray and electron diffraction. No evidence for material other than titania in its rutile form was obtained even though anatase and fluoride have been reported. The most efficient surface for adhesive bonding is a rough surface of the black oxide such as is produced by treatment of the metal in alkaline hydrogen peroxide.  相似文献   

19.
Thermal Chemistry of Colloidal Titanium Dioxide   总被引:3,自引:0,他引:3  
Chemical and physical analyses have shown that hydrous titanium dioxide, prepared from titanium sulfate solution, consists of flocculates of small anatase crystals. Water and sulfur trioxide appear to be present as adsorbed layers and in capillaries between and within the flocculates. During heating, loss of water occurs at about 150°C., loss of sulfur trioxide at about 650°C., crystallite and particle-size growth at about 600°C., and the transformation of anatase to rutile in the range 700° to 950°C., depending on the method of preparing the samples. The kinetics of the transformation were found to be first order, following an induction time which appeared to depend on a nucleation process. Activation energies were of the order of 100 kcal. per mole and frequency factors of the order of 1020 to 1022 hr.-1. Precision X-ray diffraction studies showed that the anatase lattice expanded slightly before the transformation and that the initial rutile formed was expanded.  相似文献   

20.
The nature of the oxide on the surface of titanium and the Ti-6Al-4 V alloy after a number of recommended treatments has been examined by x-ray and electron diffraction. No evidence for material other than titania in its rutile form was obtained even though anatase and fluoride have been reported. The most efficient surface for adhesive bonding is a rough surface of the black oxide such as is produced by treatment of the metal in alkaline hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号